Supplementary Information

Viologen-Based Ln-MOFs Material with Photochromic and Photoluminescence for Anticounterfeiting

Wen-Bo Cui, Li Huang, Yuan Shen, Xiao-Yang Yu, Zi-Yi Li and Hong Zhang*

Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China *Corresponding author.

E-mail address: zhangh@nenu.edu.cn; hope20130122@163.com

Table S1 Crystallographic data for 1 and 2		
Empirical formula	$C_{40}H_{28}ClEu_2N_4O_{23}\\$	$C_{40}H_{30}ClN_4O_{24}Tb_2$
Formula weight	1272.03	1303.97
Temperature/K	298.15	298.15
Crystal system	monoclinic	monoclinic
Space group	C2/c	C2/c
$a/\mathrm{\AA}$	36.492(3)	36.461(3)
$b/{ m \AA}$	12.6245(10)	12.5228(9)
$c/{ m \AA}$	20.7562(16)	20.6904(14)
$lpha/^{\circ}$	90	90
$eta / ^{\circ}$	101.443(3)	101.468(3)
γ/°	90	90
Volume/Å ³	9372.2(12)	9258.5(12)
Z	8	8
$\rho_{calc}g/cm^3$	1.803	1.871
μ/mm^{-1}	2.798	3.181
F(000)	4984	5096
Radiation	Mo- $K\alpha$ ($\lambda =$	Mo-K α (λ =
	0.71073)	0.71073)
2Θ range for data collection/°	4.836 to 50.128	4.72 to 50.228
Reflections collected	47815	39508
	$8256 [R_{int} =$	$8184 [R_{int} =$
Independent reflections	$0.0476, R_{sigma} =$	$0.1685, R_{sigma} =$
1	0.0307]	0.0978]
Data/restraints/parameters	8256/240/632	8184/0/649
Goodness-of-fit on F ²	1.073	1.048
Final R indexes	$R_1 = 0.0449$	$R_1 = 0.0584$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.1295$	$wR_2 = 0.1490$
Final R indexes [all data]	$R_1 = 0.0529$	$R_1 = 0.0795$
	$wR_2 = 0.1353$	$wR_2 = 0.1613$

Figure S1. (a) Metal coordination environments of compound **2**. (b) Metal coordination environments of compound **2**. (c-d) 3D network stacking structure of **2** in the *b*,*c* direction.

Figure S3. Structures of compound **2** by $\pi \cdots \pi$ interactions.

Figure S4. The TG plot for 1.

Figure S5. The TG plot for **2**.

Figure S6. Stability of compounds 1 and 2

Figure S7. PXRD of simulated, 1, 1P, decolored of 1P.

Figure S8. PXRD of simulated, 2, 2P, decolored of 2P.

Figure S9. FT-IR spectra of 1, 1P, decolored of 1P.

Figure S10. FT-IR spectra of 2, 2P, decolored of 2P.

Figure S11. Electron transfer path of compound $1 : (a) \text{ N-O}; (b)\alpha/\beta \text{ C-H···O/Cl.}$

Figure S12. Electron transfer path of compound **2** : (a) N-O; (b) α/β C-H···O/Cl.

Figure S13. The solid-state excitation spectra (a) and emission spectra (b) of 1 at

room temperature ($\lambda_{ex} = 380 \text{ nm}$)

Figure S14. The solid-state excitation spectra (a) and emission spectra (b) of 2 at

room temperature ($\lambda_{ex} = 468 \text{ nm}$)

Figure S15. Photomodulated fluorescence spectra of 2.