Supporting Information

Crystalline thiacalixarene assembly for adsorption ability

toward linear and branched C6 alkane vapor isomers

Manabu Yamada,*a Ruka Yoshizaki,a Faiq Sayfiyy Bin Shahril Anuar,^b Hiroshi Katagiri,^c Kazuhiko Akimoto^d and Fumio Hamada^e

^a Applied Chemistry Course, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan.

^b Applied Chemistry Course, Department of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan.

^c Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510 Japan.

^d Nissan Chemical Industries, Ltd., 6903-1 Oaza-Onoda, Sanyo-Onoda, Yamaguchi 756-

0093, Japan

^d Emeritus Professor, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan

*Corresponding author. Tel +81 18 889 3068; fax: +81 18 889 3068.

E-mail address: myamada@gipc.akita-u.ac.jp

Table of Contents

1. Experimental Section

Materials

Methods

Solution ¹H NMR Powder X-ray diffraction Vapor sorption experiments of the activated crystal **1***α* toward five C6 alkanes Thermogravimetric analysis (TGA)

2. Supporting figures

Fig. S1 Sorption experiments of single or two-component alkane vapors by the activated crystal 1α for five C6 alkanes, such as *n*-hexane (*n*-C6), isohexane (2-C6), 3-methylpentane (3-C6), and 2,2- and 2,3-dimethylbuthanes (2,2-C6 and 2,3-C6) in vials.

Fig. S2 500 MHz ¹H NMR spectra (δ from TMS, CDCl₃) after exposure of 1 α with C6 alkane vapors as each single component system. a) 1 α exposed to 2-C6, b) 1 α exposed to 3-C6, c) 1 α exposed to 2,2-C6, and d) 1 α exposed to 2,3-C6.

Fig. S3 500 MHz ¹H NMR spectra (δ from TMS, CDCl₃) after exposure of 1 α with *n*-C6 alkane vapors as the single-component system.

Fig. S4 500 MHz ¹H NMR spectrum (δ from TMS, CDCl₃) after exposure of 1 α with 2-C6 alkane vapors as a function of exposure time.

Fig. S5 500 MHz ¹H NMR spectrum (δ from TMS, CDCl₃) after exposure of 1 α with 3-C6 alkane vapors as a function of exposure time.

Fig. S6 500 MHz ¹H NMR spectrum (δ from TMS, CDCl₃) after exposure of 1 α with 2,2-C6 alkane vapors as a function of exposure time.

Fig. S7 500 MHz ¹H NMR spectrum (δ from TMS, CDCl₃) after exposure of 1 α with 2,3-C6 alkane vapors as a function of exposure time.

Fig. S8 Reusability and adsorbed quantities of 1α for adsorption of a) 2-, b) 3-, c) 2,2-, and d) 2,3-C6 vapors in 5th cycles.

Fig. S9 500 MHz ¹H NMR spectra (δ from TMS, CDCl₃) after exposure of 1 α with *n*-C6 and branched alkane mixed vapors as each two-component system. a) 1 α exposed to *n*-C6/2-C6), b) 1 α exposed to *n*-C6/3-C6, c) 1 α exposed to *n*-C6/2,2-C6, d) 1 α exposed to *n*-C6/2,3-C6.

Fig. S10 500 MHz ¹H NMR spectra (δ from TMS, CDCl₃) after exposure of 1 α with 2-C6 and branched alkane mixed vapors as each two-component system. a) 1 α exposed to 2-C6/3-C6, b) 1 α exposed to 2-C6/2,2-C6, and c) 1 α exposed to 2-C6/2,3-C6.

Fig. S11 500 MHz ¹H NMR spectra (δ from TMS, CDCl₃) after exposure of 1 α with branched alkane mixed vapors as each two-component system. a) 1 α exposed to 3-C6/2,2-C6, b) 1 α exposed to 3-C6/2,3-C6, and c) 1 α exposed to 2,2-C6/2,3-C6.

Fig. S12 PXRD patterns of 1α exposed to *n*-C6/2-C6 (red line), *n*-C6/3-C6 (blue line), *n*-C6/2,2-C6 (purple line), *n*-C6/2,3-MeCyC6 (green line) vapors as a two-component system, and as-synthesized $1 \cdot CyC6$ (black line).

Fig. S13 PXRD patterns of 1α exposed to 2-C6/3-C6 (blue line), 2-C6/2,2-C6 (blue line), 2-C6/2,3-C6 (blue line), 3-C6/2,2-C6 (blue line), 2-C6/2,3-C6 (blue line), 2,2-C6/2,3-C6 (pink line) vapors as a two-component system, and as-synthesized 1·CyC6 (black line).

Fig. S14 Thermogravimetric analysis (TGA) of n-C6/2-C6 (yellow line), n-C6/3-C6 (green line), n-C6/2,2-C6 (red line), and n-C6/2,3-C6 (blue line) adsorbed in 1 α .

Fig. S15 Thermogravimetric analysis (TGA) of 2-C6/3-C6 (yellow line), 2-C6/2,2-C6 (green line), 2-C6/2,3-C6 (green line), 3-C6/2,2-C6 (yellow line), 3-C6/2,3-C6 (yellow line), and 2,2-C6/2,3-C6 (blue line) adsorbed in 1α .

Fig. S16 Molecular size of the three types of C6 alkanes calculating by ω B97X-D functional with 6-31G* basis set using Spartan '16 software (version 2.0.7)

3. References

1. Experimental Section

Materials

All solvents were purchased from commercial sources and used as received. The reactions were carried out in a nitrogen atmosphere. *p*-Bromothiacalix[4]arene propyl ether molecules as a 1,3-alternate conformer were also synthesized according to the literature.^{S1, S2}

Methods

Solution ¹H NMR

Solution ¹H NMR spectra were recorded at 500 MHz JEOL ECA500 instrument. Chemical shifts are quoted as parts per million (ppm) relative to tetramethylsilane (CDCl₃).

Powder X-ray diffraction

Powder X-ray diffractions (PXRD) were collected with a Rigaku Ultima IV diffractometer by using Cu K α radiation ($\lambda = 1.5406$ Å, 40 kV, 40 mA) with a graphite monochromator at a step width of 0.02° 2 θ and a scan speed 2.000° min⁻¹.

Vapor sorption experiments of the activated crystal 1a toward five C6 alkanes

Pre-treatment: Before vapor adsorption experiments, the activated crystal 1α was pretreated at 100°C under reduced pressure overnight for 1 just before using the vapor adsorption experiments. The activated crystal 1α was confirmed by a ¹H NMR study to not remain cyclohexane (CyC6) in 1α .

Vapor adsorption experiments: Adsorption experiments of 1α for the five C6 alkane

vapors were conducted using two vials as shown in Figure S1. The activated crystal 1α (0.2 g) placed in a small vial (5 mL) was inserted into a larger vial (30 mL), which was loaded with each C6 alkane (5 mL) or two-component alkane (the ratio = 1:1 (= 2.5 mL + 2.5 mL)), at ambient temperature and varying exposure times

Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) was recorded on a HITACHI STA7300 apparatus in the temperature range between 25 and 500 °C under a N_2 atmosphere at a heating rate of 10 °C min⁻¹.

Sorption Experiment in Vails

Figure S1 Sorption experiments of single or two-component alkane vapors by the activated crystal 1α for five C6 alkanes, such as *n*-hexane (*n*-C6), isohexane (2-C6), 3-methylpentane (3-C6), and 2,2- and 2,3-dimethylbuthanes (2,2-C6 and 2,3-C6) in vials.

Fig. S2 500 MHz ¹H NMR spectra (δ from TMS, CDCl₃) after exposure of 1 α with C6 alkane vapors as each single component system. a) 1 α exposed to 2-C6, b) 1 α exposed to 3-C6, c) 1 α exposed to 2,2-C6, and d) 1 α exposed to 2,3-C6. The colored areas on the spectra indicate the regions where the respective chemical shifts of the C6 alkanes appear. The color codes: pale purple = *n*-C6; pale blue = 2-C6; pale orange = 3-C6; pale gray = 2,2-C6; pale yellow = 2,3-C6.

Fig. S3 500 MHz ¹H NMR spectra (δ from TMS, CDCl₃) after exposure of 1 α with *n*-C6 alkane vapors as the single-component system. The color code: pink = *n*-C6.

Fig. S4 500 MHz ¹H NMR spectrum (δ from TMS, CDCl₃) after exposure of 1 α with 2-C6 alkane vapors as a function of exposure time.

Fig. S5 500 MHz ¹H NMR spectrum (δ from TMS, CDCl₃) after exposure of 1 α with 3-C6 alkane vapors as a function of exposure time.

Fig. S6 500 MHz ¹H NMR spectrum (δ from TMS, CDCl₃) after exposure of 1α with 2,2-C6 alkane vapors as a function of exposure time.

Fig. S7 500 MHz ¹H NMR spectrum (δ from TMS, CDCl₃) after exposure of 1 α with 2,3-C6 alkane vapors as a function of exposure time.

Fig. S8 Reusability and adsorbed quantities of 1α for adsorption of a) 2-, b) 3-, c) 2,2-, and d) 2,3-C6 vapors in 5th cycles.

Fig. S9 500 MHz ¹H NMR spectra (δ from TMS, CDCl₃) after exposure of 1 α with *n*-C6 and branched alkane mixed vapors as each two-component system. a) 1 α exposed to *n*-C6/2-C6), b) 1 α exposed to *n*-C6/3-C6, c) 1 α exposed to *n*-C6/2,2-C6, d) 1 α exposed to *n*-C6/2,3-C6. The colored areas on the spectra indicate the regions where the respective chemical shifts of the C6 alkanes appear. The color codes: pale purple = *n*-C6; pale blue = 2-C6; pale orange = 3-C6; pale gray = 2,2-C6; pale yellow = 2,3-C6.

Fig. S10 500 MHz ¹H NMR spectra (δ from TMS, CDCl₃) after exposure of **1** α with 2-C6 and branched alkane mixed vapors as each two-component system. a) **1** α exposed to 2-C6/3-C6, b) **1** α exposed to 2-C6/2,2-C6, and c) **1** α exposed to 2-C6/2,3-C6. The colored areas on the spectra indicate the regions where the respective chemical shifts of the C6 alkanes appear. The color codes: pale blue = 2-C6; pale orange = 3-C6; pale gray = 2,2-C6; pale yellow = 2,3-C6.

Fig. S11 500 MHz ¹H NMR spectra (δ from TMS, CDCl₃) after exposure of 1 α with branched alkane mixed vapors as each two-component system. a) 1 α exposed to 3-C6/2,2-C6, b) 1 α exposed to 3-C6/2,3-C6, and c) 1 α exposed to 2,2-C6/2,3-C6. The colored areas on the spectra indicate the regions where the respective chemical shifts of the C6 alkanes appear. The color codes: pale orange = 3-C6; pale gray = 2,2-C6; pale yellow = 2,3-C6.

Fig. S12 PXRD patterns of 1α exposed to *n*-C6/2-C6 (red line), *n*-C6/3-C6 (blue line), *n*-C6/2,2-C6 (purple line), *n*-C6/2,3-MeCyC6 (green line) vapors as a two-component system, and as-synthesized 1·CyC6 (black line).

Fig. S13 PXRD patterns of **1***α* exposed to 2-C6/3-C6 (brown line), 2-C6/2,2-C6 (red line), 2-C6/2,3-C6 (blue line), 3-C6/2,2-C6 (purple line), 3-C6/2,3-C6 (green line), 2,2-C6/2,3-C6 (pink line) vapors as a two-component system, and as-synthesized **1**·CyC6 (black line).

Fig. S14 Thermogravimetric analysis (TGA) of *n*-C6/2-C6 (blue line), *n*-C6/3-C6 (orange line), *n*-C6/2,2-C6 (gray line), and *n*-C6/2,3-C6 (yellow line) adsorbed in 1α .

Fig. S15 Thermogravimetric analysis (TGA) and release start and end temperature (in the table) of 2-C6/3-C6 (red line), 2-C6/2,2-C6 (yellow line), 2-C6/2,3-C6 (dark blue line), 3-C6/2,2-C6 (brown line), 3-C6/2,3-C6 (green line), and 2,2-C6/2,3-C6 (blue line) adsorbed in 1α .

Fig. S16 Molecular size of the three types of C6 alkanes calculating by ω B97X-D functional with 6-31G* basis set using Spartan '16 software (version 2.0.7).^{S3}

3. References

- S1 F. Hamada, M. Yamada, Y. Kondo, S. Ito and U. Akiba, *CrystEngComm*, **2011**, *13*, 6920-6923.
- S2 M. Yamada, F. Uemura, U. M. R. Kunda, T. Tanno, H. Katagiri and F. Hamada, *Chem. Eur. J.* **2020**, *26*, 8393–8399.
- S3 Spartan 16TM, Wavefunction Inc., Irvine, CA, USA, 2016.