Supporting Information

Amine Oxide Surfactant-Mediated Synthesis of Plate-based Gold Nanocrystals with Tunable Surface Wrinkles and Their Applications in Ethylene Glycol Oxidation Reaction

Quanlin Wu,^a Haoyu Sun,^b Yuanyuan Min,^b Lixin Wang,^a Zhihui Wang,^a Yingying Wang,^{c*}

Yan Zhao,^d and Yiqun Zheng^{b*}

^a School of Resource & Environment and Safety Engineering, Jining University, Qufu, Shandong 273155, China

^b School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, China

^c Health Management Department, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China

^d College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China

*Corresponding authors: Prof. Dr. Y. Zheng, E-mail: <u>yzheng@jnxy.edu.cn</u>; Prof. Dr. Y.-Y. Wang, <u>hxwyy2005@mail.sdu.edu.cn</u>.

Figure S1. TEM image of Au nanocrystals obtained *via* the standard procedure, except that no OTAC was added.

Figure S2. TEM images of Au nanocrystals obtained *via* the standard procedure, except that the LAO was replaced by LDAO (200 mM) with the volume set to a) 0.01 mL; b) 0.05 mL; c) 0.1 mL; d) 0.25 mL; e) 0.5 mL; f) 1 mL, respectively.

Figure S3. TEM image of Au nanocrystals obtained via the standard procedure, except that except that the LAO was replaced by LDAO (1.3 M) with the volume set to: a) 0.25 mL, b) 1 mL, c) 2 mL, and d) 5 mL, respectively.

Figure S4. TEM images of Au nanocrystals obtained via the standard procedure, except that the LAO was replaced by C₁₂₋₁₈DAO as follows: a) 200 mM, 0.02 mL; b) 200 mM, 0.1 mL; c) 200 mM, 0.25 mL; d) 200 mM, 0.5 mL; e) 200 mM, 1 mL; f) 20%wt, 5 mL, respectively.

Figure S5. TEM images of products obtained *via* the standard procedure, except that the cosurfactant LAO was replaced by a) bis-(2-hydroxyethyl)-tallowamine oxide, b) N-(cocoalkyl)dimethylamine oxide, c) N-9-octadecenylpropane-1,3-diamine, and d) decylamine, respectively.

Figure S6. TEM image of quasi-spherical Au nanocrystals. They were prepared by heating the aqueous mixture of OTAC (20 mM, 5 mL), HAuCl₄ (1 mM, 6 mL), and AA (10 mM, 2 mL) at 60 °C for 1 h and collected via centrifugation.

Figure S7. CV curves collected in 1 M KOH+1 M ethylene glycol under different scan rates.

Electrocatalysts: a) Au NPs-III; b) Au NPs-IV; c) Au NPs-V; d) Au NCs.

	E _s	E _p	Mass	ECSA		SA	i (t=3000s)
Electrocatalyst	(mV)	r (mV)	Activity	$(m^2 g^{-1})$	i_r/i_f	(mA cm ⁻	(mA mg ⁻¹)
		、 ,	(mA mg ⁻¹)			2)	
Au NPs-III/C	898.8	1385.2	956.4	16.5	1.1	5.79	343
Au NPs-IV/C	947.6	1271.0	82.5	7.9	1.2	1.05	4.70
Au NPs-V/C	976.3	1238.9	96.6	14	0.92	0.69	12.3
Au NCs/C	1021	1223.1	16.1	4.4	0.91	0.37	0.30

 Table S1. Summary of EGOR performances of Au NPs/C and Au NCs electrocatalysts in the present study.

Electrocatalyst	Mass Activity (mA mg _{Au} ⁻¹)	Reference
Au NPs-III	956.4	
Au NPs-IV	82.5	This work
Au NPs-V	96.6	
Au NCs	16.1	
Au nanospheres	862	1
Au nanocrystals	140	2
Core-shell AuPd@Pd nanocrystals	535.4	
Au nanocrystals	929.1	3

 Table S2. Comparison of typical Au-based EGOR electrocatalysts in alkaline electrolyte.

References

- H. Xu, J. Wang, B. Yan, K. Zhang, S. Li, C. Wang, Y. Shiraishi, Y. Du and P. Yang, Nanoscale, 2017, 9, 12996-13003.
- 2. Q. Liu, Y.-R. Xu, A.-J. Wang and J.-J. Feng, *Int. J. Hydrogen Energy*, 2016, **41**, 2547-2553.
- H. Xu, B. Yan, K. Zhang, J. Wang, S. Li, C. Wang, Z. Xiong, Y. Shiraishi, Y. Du and P. Yang, ACS Sustain. Chem. Eng., 2017, 5, 10490-10498.