Crystal growth, dislocation, thermodynamic and optical properties, electronic structure of Mg_2SiO_4 single crystal

Wenli Qian ^{abc}, Mingliang Yang ^{abc}, Qingli Zhang ^{*abc}, Guihua Sun ^{*ac}, Rui Zhang ^{ad}, Xiaofei Wang ^{ac}, Renqin Dou ^{ac}, Wenpeng Liu ^{ac}, Yu Sun ^{ac}

^a Anhui Provincial Key Laboratory of Photonics Devices and Materials, Anhui Institute of Optics

and Fine Mechanics, Hefei Institutes of Physical Science, Chinese

Academy of Sciences, Hefei, 230031, PR China

^b University of Science and Technology of China, Hefei, 230026, PR China

^c Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037, PR China

^d College of Chemistry and Chemical Engineering, Shanghai University of

Engineering Science, Shanghai, 201620, PR China

Crystalline surface	Lattice period	Surface energy (${}^{eV/{ m \AA}^2}$)	Minimum value (^{eV/Å²)}		
	0	0.158425932			
	0.008	0.218535088			
	0.074	0.277163145			
	0.222	0.243540379			
	0.223	0.167838601			
	0.234	0.168919244			
	0.266	0.16777471			
	0.277	0.24356673			
	0.278	0.277364151			
(100)	0.426	0.218532075	0.158425932		
	0.492	0.15956242			
	0.5	0.159770295			
	0.508	0.2335502			
	0.574	0.277451907			
	0.722	0.243566907			
	0.723	0.167783501			
	0.734	0.169047813			
	0.766	0.168102012			
	0.777	0.24367907			

Table S1. Calculated surface energy of the Mg₂SiO₄ crystal on (100), (010), and (001)

faces. (ICSD#062525)¹

	0.778	0.277172548	
	0.926	0.218550025	
	0.992	0.158718862	
	1	0.158434231	
	0	0.253849312	
	0.053	0.096363552	
	0.092	0.192731639	
	0.094	0.208589091	
	0.163	0.201488775	
	0.223	0.062025912	
	0.277	0.20193574	
	0.337	0.208562134	
	0.406	0.192604797	
	0.408	0.096349304	
	0.447	0.253906433	
(010)	0.5	0.253826072	0.061996248
	0.553	0.096357563	
	0.592	0.19252851	
	0.594	0.208802361	
	0.663	0.201447647	
	0.723	0.061996248	
	0.777	0.201431299	
	0.837	0.208423731	
	0.906	0.192516133	
	0.908	0.096338057	
	0.947	0.253916437	
	1	0.253860416	
	0	0.136493261	
	0.033	0.163680952	
	0.25	0.163593889	
	0.467	0.136281502	
(001)	0.5	0.136203992	0.136203992
	0.533	0.163466	
	0.75	0.163577937	
	0.967	0.136322654	
	1	0.136418232	

Modes	Previous work ²	Previous work ³	This work
	966	967	966
	856	-	858
	826	-	826
	609	610	610
	546	548	548
A_g	424	426	423
	340	341	342
	329	334	332
	305	307	305
	227	232	229
	183	183	-
	976	-	_
	866	-	-
	839	-	-
	632	-	
	583	585	
B_{1g}	434	443	436
	418	-	-
	318	-	319
	260	-	-
	224	-	-
	192	-	-
	884	882	883
_	588	-	590
	441	-	-
B_{2g}	368	-	-
	324	-	-
	244	244	-
	142	171	-
	922	920	922
	595	593	-
	412	426	-
B_{3g}	376	414	-
	318	376	-
	272	-	-
	226	-	-

Table S2. The Raman active modes of previous results and this work.

Notes and references

- 1. R. Van der Wal, A. Vos and A. Kirfel, *Acta Crystallographica Section B: Structural Science*, 1987, **43**, 132-143.
- 2. K. Kakimoto, *American Mineralogist*, 1978, **63**, 1198-1208.

3. P. Richet and F. Guyot, *Journal of Geophysical Research*, 1991, **96**, 11805-11816.