Supporting Information

Robust and durable Li-ion batteries fabricated by using lead-free crystalline M_2NiMnO_6 (where M= Eu, Gd, Tb) double perovskites

Kiran P. Shinde,^a Harish S. Chavan,^b Sarfraj H. Mujawar, ^c Amol S. Salunke^d, Abu Talha Aqueel Ahmed,^d Nabeen K. Shrestha^d, Joon Sik Park,^a Hyunsik Im,^d Akbar I. Inamdar,^{* d}

^a Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, South Korea.

^b Department of Chemistry and Chemical Engineering, Inha University, 100 inha-ro, Michuholgu, 22212 Incheon, South Korea

^cDepartment of Physics, Yashavantrao Chavan Institute of Science Satara, (Autonomous),

Maharashtra, India, 415001.

^d Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea

*Corresponding author

E-mail: akbarphysics2002@gmail.com,

Keywords: Li-ion battery; anode electrode; double perovskite; electrochemical properties, energy storage

Figure S1. EDAX and elemental mapping analysis of the double perovskite M_2NiMnO_6 (where M= Eu, Gd, Tb) anode electrodes, (a, b) Eu₂NiMnO₆ (c, d) Gd₂NiMnO₆ (e, f) Tb₂NiMnO₆.

Figure S2. X-ray photo electron spectroscopy (XPS) survey spectra of the double perovskite M_2NiMnO_6 (where M= Eu, Gd, Tb), revealing the presence of the all the desired elements.

Figure S3. Nyquist plots of the Tb_2NiMnO_6 anode electrode before and after lithiation process, suggesting the significant reduction of the charge transfer resistance upon lithiation.

Figure S4. The plot of the $v^{l/2}$ vs. $i/v^{l/2}$ is potted to estimate the k_1 and k_2 which are the slope of the curve and the y-axis intercept, respectively

Sr.	Sample	Solution resistance	Charge-transferer	Warburg impedance
No.	Name	$(Rs-\Omega)$	resistance (<i>Rct</i> - Ω)	$(W-\Omega.s^{-1/2})$
1.	Gd ₂ NiMnO ₆	22.0	68.5	22
2.	Tb ₂ NiMnO ₆	5.2	31.5	8.5

Table-1 Parameters obtained by fitting of Nyquist plot using Zfit software as a function of potential.