Supporting information

One-step synthesis of pure-phase amino-functionalized zirconium-based capsule ZrC-1-NH₂ for photocatalytic degradation of tetracycline

Ting-Ting Xu^a, De-Sheng Wei^a, Shuang-Bao Li^b, Yu-Teng Zhang^a,*, Nan Lv^a,*

^a College of Chemical Engineering, Northeast Electric Power University, Jilin City 132012, PR China ^b School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China

*Corresponding author.

E-mail: zhangyuteng@neepu.edu.cn (Y.-T. Zhang), lvnan0607111@126.com (N. Lv)

Table. S1. Crystal data and structure refinement for ZrC-1-NH₂

Fig. S1. Coordination environment diagrams of Cl1 (a) and Cl2 (b), aiming to emphasize the multiple hydrogen bonds within the structure, where Cl1 has an occupancy of 1 and Cl2 has an occupancy of 0.5.

Fig. S2. PXRD patterns of ZrC-1-NH₂

Fig.S3. ESI-TOF-MS of MW-ZrC-1

Fig. S4. EDS spectrum of MW-ZrC-1-NH₂

Fig. S5. Comparison of photocatalytic degradation of tetracycline by MW-ZrC-1-NH $_2$ and MW-ZrC-1.

Fig. S6 (a) The removal efficiency of TC on different pH; (b) the kinetic curves of TC on different pH.

Fig. S7. VB-XPS spectra of MW-ZrC-1-NH₂.

Fig. S8. The recycle experiments of MW-ZrC-1-NH $_2$ photocatalyst.

Fig. S9. The ESI-TOF-MS of MW-ZrC-1-NH₂ after photodegradation of TC.

Identification code	ZrC-1-NH ₂
Empirical formula	$C_{54}H_{48}CI_2N_3O_{21}Zr_6$
Formula weight	1693.17
Temperature/K	150.0
Crystal system	Orthorhombic
Space group	Cmcm
a/Å	19.8615(12)
b/Å	17.7218(10)
c/Å	17.2448(12)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	6069.9(7)
Z	4
$\rho_{calc}g/cm^3$	1.853
µ/mm⁻¹	6.389
F(000)	3340.0
Crystal size/mm ³	$0.21 \times 0.2 \times 0.19$
Radiation	GaKα (λ = 1.34139)
2θ range for data collection/°	5.814 to 137.288
	0 ≤ h ≤ 22,
Index ranges	$-24 \le k \le 24$,
	-21 ≤ I ≤ 0
Reflections collected	6307
Independent reflections	3322 [R _{int} = 0.0438, R _{sigma} = 0.0486]
Data/restraints/parameters	3322/66/215
Goodness-of-fit on F ²	1.046
Final R indexes [I>=2σ (I)]	R ₁ = 0.0680, wR ₂ = 0.1990
Final R indexes [all data]	$R_1 = 0.0716$, w $R_2 = 0.2027$
Largest diff. Peak/hole/ eÅ ⁻³	1.76/-1.36

Table. S1. Crystal data and structure refinement for ZrC-1-NH₂

Fig. S1. Coordination environment diagrams of Cl1 (a) and Cl2 (b), aiming to emphasize the multiple hydrogen bonds within the structure, where the occupancy of Cl1 is 1 and that of Cl2 is 0.5. For clarity, the hydrogen atoms on the benzene ring of the ligand are omitted.

Fig. S2 PXRD patterns of ZrC-1-NH₂.

Fig.S3. ESI-TOF-MS of MW-ZrC-1

Fig. S4. EDS spectrum of MW-ZrC-1-NH $_2$

Fig. S5. Comparison of photocatalytic degradation of tetracycline by MW-ZrC-1-NH $_{\rm 2}$

and MW-ZrC-1.

Fig. S6 (a) The removal efficiency of TC on different pH; (b) the kinetic curves of TC on different pH.

Fig. S7. VB-XPS spectra of MW-ZrC-1-NH₂.

Fig. S8. The recycle experiments of MW-ZrC-1-NH $_2$ photocatalyst.

Fig. S9. The ESI-TOF-MS of MW-ZrC-1-NH $_2$ after photodegradation of TC.