Supplementary Information (SI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2024

[Type here]

Supporting Information

Structural insights of Ketanserin salts with aliphatic acids and their physiochemical properties

Gowtham Kenguva,^a Smruti Rekha Rout,^a Tabrez R. Shaikh ^b, Debjani Baidya ^b, Nikita Shelke ^b, Palash Sanphui,^{*c} Rambabu Dandela^{*a}

^aDepartment of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India. E-mail: <u>r.dandela@iocb.ictmumbai.edu.in</u>,

^b Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India

^c Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, India. E-mail: palashi@srmist.edu.in,

Contents	Page no.
Table S1: Crystallographic table of KTS salts	02
Table S2: Hydrogen bond geometry of molecular adducts of	03
KTS.	
Table S3: Hirshfeld Surface Analysis of all molecular adducts.	04
Figure S1: ORTEP view of KTS salts in 50% thermal	05
ellipsoids.	
Figure S2. PXRD analysis after solubility experiments in both	06
pH 1.2 and pH 6.8.	
Solubility studies	07-08

Parameters 2.367	KTS.SA.H2O	KTS.SA.2H2O	KTS.MA	KTS.FA
Formula	C ₂₂ H ₂₃ FN ₃ O ₃ :H ₃	C ₂₂ H ₂₃ FN ₃ O ₃ :	C ₂₂ H ₂₂ FN ₃ O ₃ :	C ₂₂ H ₂₃ FN ₃ O ₃ :
	N ₃ S:H ₂ O	$H_2NO_3S:2(H_2 O)$	$C_4H_3O_4$	$C_4H_3O_4$
$M_{ m r}$	511.54	528.55	510.49	511.50
crystal shape	Needle	block	Block	Block
crystal colour	Colourless	colourless	Colourless	Colourless
crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic
space group	P^{-1}	P^{-1}	$P2_1/n$	$P2_{l}/c$
<i>Т</i> , К	100	301.00	298(2)	298(2)
λ (Mo-K _a)/Å	0.71073	0.71073	0.71073	0.71073
a/Å	8.554(3)	9.104(3)	6.018(5)	6.662(2)
b/Å	10.936(5)	10.937(4)	31.707(2)	21.965(1)
c/Å	12.526(5)	12.774(5)	12.500(1)	16.468(1)
$lpha ^{\prime 0}$	85.91(2)	86.214(11)	90	90
β^{0}	76.418(19)	71.917(10)	96.98(2)	91.69(1)
$\gamma^{\prime 0}$	87.737(17)	82.894(12)	90	90
$V/Å^3$	1135.8(8)	1199.3(7)	2368.0(3)	2408.7(4)
Ζ	2	2	4	4
D_c / g cm ⁻³	1.496	1.464	1.432	1.411
μ , mm ⁻¹	0.204	0.199	0.110	0.108
2θ range [⁰]	2.43-27.48	2.36-25	2.53-26.40	2.64-27.48
limiting indices	$-11 \le h \le 11$	$-10 \le h \le 10$	$-7 \le h \le 7$	$-8 \le h \le 8$
	$-14 \le k \le 14$	$-12 \le k \le 12$	$-39 \le k \le 39$	$-28 \le k \le 28$
	$-16 \le l \le 16$	$-15 \le l \le 15$	$-15 \le l \le 15$	$-21 \le l \le 21$
<i>F</i> (000)	538	556	1068	1072
total reflections	43374	18053	40219	49293
unique reflections	5194	4199	4869	5537
reflection at $I >$	4102	2183	2961	3809
2σ (Ι)				
No. of parameters	333	356	343	339
$R_1, I > 2\sigma(I)$	0.045	0.090	0.047	0.053
$wR_2 I > 2\sigma(I)$	0.109	0.264	0.148	0.115
GoF on F^2	1.051	1.061	1.123	1.062
CCDC Nos	2372349	2372347	2372346	2372345

[Type here]

Solid forms	D –Н··· <i>A</i>	<i>D</i> -H(Å)	H…A(Å)	D -A(Å)	<i>D</i> –H··· <i>A</i> (°)
KTS.SA (DH)	N2-H2…O3	0.86	1.98	2.823(5)	164.7
	N3-H3…O5	0.98	1.93	2.827(5)	151.7
	O8-H8a…O4 ²	0.91	1.89	2.778(1)	166.7
	O8–H8b…O2	0.94	1.87	2.799(6)	166.8
	O10-H10c…O8	0.85	2.08	2.732(1)	133.6
	O10-H10d…O6 ³	0.85	1.54	2.39(2)	179.6
KTS.SA (MH)	N2-H2…O31	0.90(3)	1.92(3)	2.793(2)	165(2
	O7-H7A…O2	0.86(4)	1.96(4)	2.808(2)	168(3)
	O7-H7B…O62	0.84(3)	2.04(3)	2.873(3)	171(3)
	N3-H3…O43	0.91(3)	1.95(3)	2.846(2)	166(2)
KTS.MA	N3-H3…O6	0.94(3)	1.93(3)	2.774(2)	149(2)
	O4–H4A…O6	0.82	1.61	2.426(3)	177.9
KTS.FA	O5-H5 ···O6	0.82	1.77	2.563(2)	162.5
	N1-H1…O11	0.92(3)	1.70	2.798(2)	155(2)
	N3-H3…O7	0.98	1.93(3)	2.681(2)	174.4

Table S1. Crystallographic lattice parameters of KTS salts

Table S2: Hydrogen bond geometry ($Å/\circ$) of molecular adducts of KTS.

 Table S3: Hirshfeld Analysis of KTS and its salts

(b)

(d)

Figure S1: ORTEP view of (a) KTS.SAMH, (b) KTS.SA.DH, (c) KTS.MA (d) KTS.FA salts. Herein, the thermal ellipsoids are drawn with a 50% probability.

Figure S2. PXRD Analysis of all molecular adducts after solubility in both pH 1.2 and 6.8 media

Solubility studies of KTS and its salts in both pH 1.2 and 6.8 medium:

[Type here]

Standard Table for KTS in pH 6.8

ppm	Absorbance			
1	0.278			
2	0.482			
3	0.688			
4	0.82			
5	0.978			

Unknown Table of KTS in pH 6.8 after applying dilution factor

S.No	Sample Name	Absorbance				ncentrati (ppm)	on	Standard Deviation	Average Concentration (ppm)	After adding the dilution factor (mg/mL)
1	KTS.AA	0.529	0.532	0.534	2.3140	2.3311	2.3425	0.0144	2.3292	2.33
2	KTS.FA	0.74	0.743	0.739	3.5182	3.5353	3.5125	0.0119	3.5220	3.52
3	KTS.MA	0.565	0.563	0.566	2.5195	2.5080	2.5252	0.0087	2.5176	2.52
4	KTS.SA	0.958	0.962	0.959	4.7624	4.7852	4.7681	0.0119	4.7719	15.41
5	KTS.TA	1.027	1.024	1.019	5.1561	5.1390	5.1105	0.0231	5.1352	3.59
6	KTS.HCI	0.862	0.868	0.865	4.2145	4.2487	4.2316	0.0171	4.2316	4.23
7	KTS	0.372	0.379	0.375	1.4180	1.4579	1.4351	0.0200	1.4370	1.44

[Type here]

Standard Table for KTS in pH 1.2

ppm	Absorbanc			
1	0.332			
2	0.633			
3	0.891			
4	1.156			
5	1.392			

Unknown Table of KTS in pH 1.2 after applying dilution factor

S.No	Sample Name	Absorbance		Concentration (ppm)			Standard Deviation	Average Concentration (ppm)	After adding the dilution factor (mg/mL)	
1	KTS.AA	0.699	0.701	0.696	2.3133	2.3209	2.3020	0.0095	2.3121	2.31
2	KTS.FA	0.723	0.719	0.716	2.4040	2.3889	2.3775	0.0132	2.3901	2.39
3	KTS.MA	0.899	0.901	0.907	3.0687	3.0763	3.0990	0.0157	3.0813	3.08
4	KTS.SA	0.652	0.659	0.66	2.1358	2.1622	2.1660	0.0165	2.1547	2.14
5	KTS.TA	0.653	0.661	0.649	2.1396	2.1698	2.1245	0.0231	2.1446	3.59
6	KTS.HCI	0.601	0.593	0.592	1.9432	1.9130	1.9092	0.0186	1.9218	1.92
7	KTS	0.442	0.456	0.438	1.3426	1.3955	1.3275	0.0357	1.3552	1.36