Supplementary information

Intermolecular interactions, Regioselectivity, and Biological Activity of L-ascorbic Acid, Nicotinic Acid and their Cocrystal

Diana N. Evtushenko,^{a,e} Alexander V. Fateev,^{a,d} Mark A. Khaitnovsky,^e Julia Polishchuk,^a Oleg.V. Kokorev ^b, T.F. Nasibov ^b, A.V. Gorokhova ^b, U.A. Bariev ^b, K.V. Zaitsev ^c, Igor.A. Khlusov, _b and Olga V. Vodyankina^{*a}.

- [a] Faculty of Chemistry Tomsk State University
 36, Lenin Ave., 634050 Tomsk, Russia
 e-mail: Olga Vodyankina vodyankina_o@mail.ru
- [b] Laboratory of Cellular and Microfluidic Technologies Institution Siberian State Medical University (SibSMU) 2, Moskovsky trakt 634050 Tomsk, Russia
- [c] Experimental Laboratory of Biomedival Technologies
 Tomsk Scientific Research Institute of Balneology and Physiotherapy, Branch of SibFNC of FMBA of Russia
 1, st. Luxemburg, 634009Tomsk, Russia
- [d] Faculty of Biology and Chemistry Tomsk State Pedagogical University
 60, st. Kievskaya, 634061 Tomsk, Russia
- Synchrotron Radiation Facility Siberian Circular Photon Source "SKIF"
 Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences (SRF "SKIF")
 Morskoy Ave., 630090 Novosibirsk, Russia

Table S1 Preparation method and characteristics (DSC, powder X-ray diffraction and IR spectroscopy) of

L-Asc · Nic co-crystal prepared by different methods

L-Asc • Nic (RUWFAR (CSD 5.40)) ¹⁶	L-Asc · Nic [This work]
L-Ascorbic acid, 88.1 mg (0.500 mmol),	Samples of L-AscNic cocrystals were obtained
and nicotinic acid, 61.6 mg (0.500 mmol),	according to the procedure described in Ref. ¹⁶
were dissolved in 6 mL of MeOH and	
heated until a clear solution was obtained.	
The solution was slowly evaporated at	
room temperature and colorless crystals	
were harvested after two days.	

*The FT-IR spectra of the powder samples were recorded on the Nicolet 6700 Fisher Thermo Scientific Instrument using the ATR FTIR in the range of 4000-400 cm⁻¹.

**The differential scanning calorimetry (DSC) measurements were performed to compare the thermal behaviour of co-crystals. We used the NETZSCH STA 449F1 STA449F1A-0237-M instrument in the temperature range of 30-600° C at a heating rate of 10 K/min in an argon atmosphere.

***X-ray powder diffraction (XRPD) patterns were measured using the STOE-MP diffractometer with Cu anode (K α 1, λ = 1.5406 Å, bent Ge (111) monochromator) and the Dectris Mythen 1K detector; data collected in transmission mode with 0.015-degree steps, data collection time was 2 seconds per step.

Table S2 Hydrogen-bond parameters of pristine L-Asc structure (COFKOA (CSD)),²⁴ Nic crystal structure (NICOAC02 (CSD)),²⁵ L-AscNic cocrystal structure (RUWFAR (CSD))¹⁴

L-Asc crystal structure (COFKOA (CSD))[24]		Nic crystal stru	cture (NICOAC02 (CSD))[25]	L-Asc·Nic cocrystal structure (RUWFAR (CSD))[14]	
hydrogen bond	D—H (Å)/H…A (Å)/ /D…A (Å)/D—H…A (°)	hydrogen bond	D—H (Å)/H…A (Å)/ /D…A (Å)/D—H…A (°)	hydrogen bond	D—H (Å)/H…A (Å)/ /D…A (Å)/D—H…A (°)
O(4a) – H····O(2a)	0.820/1.929/2.681/151.9	O(1) – H…N	0.847/1.843/2.660/161.8	C(10) _{Nic} - H····O(5) _{Asc}	0.949/2.377/3.042/126.8
O(4b) – H…O(2b)	0.820/1.908/2.667/153.3	C(2) – H····O(2)	0.939/2.550/3.236/130.2	O(5) _{Asc} – H …·O(6) _{Asc}	0.840/1.874/2.701/167.9
O(3a) – H····O(5a)	0.820/1.832/2.648/172.7	C(4) – H····O(2)	0.990/2.608/3.317/128.6	O(6) _{Asc} – H····O(4) _{Asc}	0.840/1.916/2.746/169.1
O(5b) – H…O(3b)	0.820/2.010/2.798/142.4	C(6) – H····O(2)	0.980/2.576/3.247/125.7	O(3) _{Asc} – H····O(7) _{Nic}	0.841/1.786/2.593/160.1
O(3b) – H…O(6a)	0.819/1.812/2.609/163.8			O(4) _{Asc} – H····O(8) _{Nic}	0.840/1.705/2.479/152.2
O(6b) – H…O(3a)	0.820/2.206/2.944/149.9			C(11) _{Nic} - H····O(2) _{Asc}	0.950/2.282/3.139/149.7
O(6a) – H…O(5b)	0.819/1.978/2.782/166.8			N _{Nic} – H····O(2) _{Asc}	0.879/2.416/2.979/122.1
C(6b) – H …O(1a)	0.969/2.684/3.466/138.0			N _{Nic} – H····O(7) _{Nic}	0.879/2.188/2.959/146.1
O(5a) – H…O(6b)	0.819/1.921/2.714/162.5				
C(6a) – H … O(4b)	0.969/2.601/3.513/156.7				
C(6a) – H … O(1b)	0.970/2.605/3.327/131.4				
C(6b) – H …O(4a)	0.970/2.515/3.393/150.4				

Table S3 Total effective charge of the L-ascorbic molecule in the structures of L-ascorbic acid (1) and its cocrystals $(2-11)^6$

		Total effect	ive charge of 1	L-ascorbic (e)	
Coformer	CSD refcode	Mulliken	Voronoi	Hirshfeld	Reference
5-(1,2-Dihydroxyethyl)-	COFKOA	0.00 -0.00	0.02 -0.01	0.03 -0.03	McMonagle & Probert (2019)
3,4-dihydroxy-	COFKOA01	0.05 - 0.05	0.01 - 0.01	0.03 - 0.03	0 ()
furan-2(H)-one, 1	COFKOA02	0.04 - 0.04	0.01 - 0.01	0.01 - 0.01	
	LASCAC12	0.06 - 0.06	0.09 - 0.09	0.12 - 0.12	Milanesio et al. (1997)
	LASCAC14	0.01 - 0.01	0.06 - 0.06	0.08 - 0.08	Guzei (2009)
	LASCAC15	0.03 - 0.03	0.07 - 0.07	0.11 - 0.11	Fronczek (2016)
4-(Pyridin-4-yl)pyridinium, 2	POHNUY	-0.04	0.01	0.04	Sylvester et al. (2019)
		-0.04	-0.03	-0.03	
Nicotinamide, 3	OXOHEQ	0.02	0.09	0.13	Wang <i>et al.</i> (2016 <i>a</i>)
		-0.05	0.00	-0.03	5
Nicotinamide (three molecules in the asymmetric unit)	OXOHIU	0.01	0.04	0.01	
Isonicotinamide, 4	OXOGUF	0	-0.19	0	
Bis(isonicotinamide)	$OXOHAM^d$	-0.02	-0.08	-0.11	
		0.15	-0.26	-0.03	
3-Bromopyridin-4(1H)-one, 5	ULUZUY ^c	0.03	0.09	0.14	Wang <i>et al.</i> (2016 <i>b</i>)
Betaine, 6	RUWFEV	0.67	0.03	0.04	Kavuru et al. (2010)
Nicotinic acid, 7	RUWFAR ^b	-0.012	-0.01	-0.03	
Sarcosine, 8	RUWDUJ ^b	0.01	0.01	0.02	
Isoquinoline-1-carboxylic acid, 9	ERAVAU	-0.07	-0.18	-0.25	Goher et al. (2003)
L-Serine, 10	SERASC10 ^e	0.01	0.08	0.17	Sudhakar et al. (1980)
Picolinic acid, 11	-	-0.04 -0.03	-0.17 -0.16	-0.24 -0.24	This work

Figure S1 Structures of binary co-crystals containing the L-Asc molecule in a chelating configuration indicating the sign of the total effective charge of the molecule (Table S3).

Figure S2 Structure of the L-Asc molecule showing the atom-numbering schemes⁶

Table S4 The calculated descriptor values (MultiWFN) for all atoms of the conformer molecule 'a'(COFKOA(CSD)), the atom-numbering scheme at Figure S2

Atom index	f ⁺	f	f^0	f ²
01	0.02636	0.06853	0.04744	-0.04217
02	0.06802	0.19974	0.13388	-0.13173

03	0.05570	0.06016	0.05793	-0.00445
04	0.03634	0.08373	0.06003	-0.04739
05	0.01695	0.08213	0.04954	-0.06518
06	0.01944	0.09693	0.05818	-0.07750
C1	0.09221	0.04636	0.06929	0.04586
C2	0.07344	0.11842	0.09593	-0.04498
C3	0.10561	0.09712	0.10137	0.00849
C4	0.02504	0.03065	0.02785	-0.00561
C5	0.02035	0.02695	0.02365	-0.00659
C6	0.02360	0.02276	0.02318	0.00083
H2	0.06306	0.00940	0.03623	0.05366
H3	0.09759	0.00569	0.05164	0.09191
H4	0.05343	0.00873	0.03108	0.04470
H5	0.03271	0.00825	0.02048	0.02446
H5A	0.03729	0.00866	0.02298	0.02863
H6	0.07405	0.00841	0.04123	0.06564
H6A	0.04247	0.00791	0.02519	0.03456
H6B	0.02730	0.00954	0.01842	0.01776

Table S5 The calculated descriptor values (MultiWFN) for all atoms of the conformer molecule 'b' (COFKOA(CSD)), the atom-numbering scheme at Figure S2

Atom index	f+	f	f ⁰	f ²
01	0.02516	0.07035	0.04775	-0.04519
02	0.06430	0.20437	0.13433	-0.14008
03	0.03393	0.08514	0.05953	-0.05121
04	0.05576	0.06010	0.05793	-0.00434
05	0.01778	0.07308	0.04543	-0.05530
06	0.01965	0.09139	0.05552	-0.07174
C1	0.08788	0.04831	0.06809	0.03957
C2	0.06762	0.12651	0.09707	-0.05890
C3	0.10095	0.10034	0.10065	0.00061
C4	0.02493	0.03192	0.02842	-0.00699
C5	0.02055	0.02700	0.02377	-0.00645
C6	0.02373	0.02287	0.02330	0.00086
H2	0.06545	0.00962	0.03754	0.05584
Н3	0.09917	0.00570	0.05244	0.09347
H4	0.04174	0.00953	0.02563	0.03222
H5	0.06571	0.00688	0.03629	0.05883
H5A	0.03851	0.00446	0.02149	0.03404
H6	0.06814	0.00810	0.03812	0.06003
H6A	0.04225	0.00967	0.02596	0.03258
H6B	0.02728	0.00471	0.01599	0.02257

Table S6 The calculated descriptor values (MultiWFN) for all atoms of

the conformer molecule L-Asc $_{\text{L-AscNic}}$ (RUWFAR (CSD)), the atom-numbering scheme at Figure S2

Atom index	f+	f	f^0	f ²
01	0.01669	0.07558	0.04613	-0.05889
02	0.04240	0.23208	0.13724	-0.18968
03	0.03511	0.08108	0.05809	-0.04598
04	0.05618	0.05856	0.05737	-0.00238
05	0.01954	0.06093	0.04023	-0.04139
O6	0.01760	0.08487	0.05124	-0.06727
C1	0.05862	0.05042	0.05452	0.00820
C2	0.05498	0.12044	0.08771	-0.06546
C3	0.07677	0.10239	0.08958	-0.02562
C4	0.02017	0.02852	0.02434	-0.00836
C5	0.02407	0.03105	0.02756	-0.00697
C6	0.02315	0.02441	0.02378	-0.00126
H2	0.10111	0.00740	0.05425	0.09371
Н3	0.12820	0.00544	0.06682	0.12276
H4	0.03795	0.00919	0.02357	0.02876
H5	0.08126	0.00555	0.04340	0.07572
H5A	0.05530	0.00415	0.02973	0.05115
H6	0.07198	0.00720	0.03959	0.06478
H6A	0.01902	0.00404	0.01153	0.01498
H6B	0.05128	0.00665	0.02897	0.04463