Three peroxomorphic H₂O₂ adducts of antibiotic furacin: the first cases of 2D hydrogen-bonded peroxide layers and concerted flip-flop hydrogen disorder of peroxide species.

Andrei V. Churakov

N.S.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, 119991 Moscow, Russia.

- 1. Tables S1-S3. Geometric parameters of hydrogen bonds for structures 1-3.
- 2. Compounds and Solvents.
- 3. Table S4. Crystal data and details of X-ray analysis for 1-3.

4. Optical microscopy.

- 5. Figure S1. Hydrogen bonded 2D layers in the structure 1.
- 6. Figure S2. Hydrogen bonds (dashed lines) formed by H7-O7-O7A-H7A molecule in the structure 2.
- 7. Figure S3. Hydrogen bonds (dashed lines) formed by H1-O1-O2-H2 molecule in the structure 2.
- 8. Figure S4. Hydrogen bonded 3D packing motif in the structure 2.
- 9. Figure S5. Hydrogen bonds (dashed lines) formed by H1-O1-O2-H2 molecule in 3.
- 10. Figure S6. Hydrogen bonds (dashed lines) formed by H3-O3-O4-H4 molecule in 3.
- 11. Figure S7. Hydrogen bonds (dashed lines) formed by H5-O5-O6-H6 molecule in 3.
- 12. Figure S8. Hydrogen bonds (dashed lines) formed by H7-O7-O8-H8 molecule in 3.
- 13. Figure S9. Hydrogen bonds (dashed lines) formed by H9-O9-O10-H10 molecule 3.
- 14. Figure S10. Hydrogen bonds (dashed lines) formed by H11-O11-O12-H12 molecule in 3.
- 15. Figure S11. Hydrogen bonds (dashed lines) formed by H21-O21-O22-H22 molecule in 3.

D–HA	D–H, Å	HA, Å	DA, Å	∠ D–H…A, °
01–H104	0.849(19)	2.449(19)	3.2261(12)	152.5(16)
01–H105	0.849(19)	2.334(19)	3.0429(13)	141.3(16)
O2–H2O3 ¹	0.881(19)	1.791(19)	2.6603(13)	168.8(16)
N1-H11O1	0.863(18)	2.404(18)	3.2246(14)	159.1(15)
N1-H12O6 ²	0.856(17)	2.477(17)	3.2171(13)	145.2(14)
N2-H21O5 ³	0.833(17)	2.433(17)	3.0798(13)	135.1(14)
1 1 2 1/	. 1 (. 1 (2			

 Table S1. Geometric parameters of hydrogen bonds in the structure 1.

 $\overline{1}$ x, y-1, z; $\overline{2}$ x- $\frac{1}{2}$, $-y+\frac{1}{2}$, $z+\frac{1}{2}$; $\overline{3}$ x, y+1, z

 Table S2. Geometric parameters of hydrogen bonds in the structure 2.

D-HA	D–H, Å	HA, Å	DA, Å	∠ D–H…A, °
01–H1O3 ¹	0.876(18)	1.878(18)	2.7390(11)	167.1(16)
O2–H2O3	0.899(18)	1.794(18)	2.6893(11)	173.2(17)
O7–H7O5	0.837(19)	2.23(2)	2.9968(12)	152.8(17)
O7–H7O4	0.837(19)	2.238(19)	2.9043(11)	136.6(17)
N1-H1107	0.839(16)	2.324(16)	3.1188(13)	158.1(14)
N1-H1201	0.876(16)	2.282(16)	3.0927(13)	153.9(14)
N2-H21O2 ²	0.879(16)	2.028(16)	2.8681(11)	159.7(14)

¹-x+3/2, y+1/2, -z+1/2; ²-x+3/2, y-1/2, -z+1/2

	<u> </u>		1	1
D–H…A	D–H, Å	HA, Å	DA, Å	∠ D–H…A, °
O1–H1O13	0.87(2)	1.82(2)	2.6958(15)	180(2)
O2–H2AO8	0.92(4)	1.82(4)	2.7379(17)	173(4)
O2–H2BO3 ¹	0.91(5)	2.17(5)	3.0409(19)	159(4)
O3–H3…O23 ¹	0.89(2)	1.81(2)	2.6967(16)	175(2)
O4–H4…O1	0.84(3)	2.03(3)	2.8582(17)	166(2)
O5–H5O22A	0.95(2)	1.87(2)	2.8125(17)	171(2)
O6–H6AO6 ¹	0.92(7)	1.86(6)	2.728(3)	155(7)
O6–H6B…O8 ²	0.85	1.89	2.7371(19)	179.9
O7–H7…O4 ²	0.847(10)	2.121(13)	2.906(2)	154(2)
O8–H8BO2	0.853(10)	1.910(16)	2.7379(17)	163(4)
08–H8A06 ²	0.853(10)	1.916(18)	2.7371(19)	161(4)
О9–Н9О12	0.877(10)	1.935(10)	2.8112(17)	178(2)
O10–H10O7	0.853(9)	2.078(10)	2.9272(19)	173(2)
O11–H11O14	0.85(2)	2.29(2)	3.0766(15)	153.2(19)
O11–H11O15	0.85(2)	2.30(2)	2.9728(16)	136.7(18)
O12–H12O23 ³	0.86(2)	1.85(2)	2.6755(15)	160(2)
O21A-H21O24	0.906(16)	2.262(18)	3.0696(15)	148.3(17)
O21A-H21O25	0.906(16)	2.33(2)	2.9866(16)	129.0(17)
O21B–H21O24	0.926(16)	2.262(18)	3.079(14)	147(2)
O21B–H21O25	0.926(16)	2.33(2)	3.014(15)	130(2)
O22A-H22O13	0.914(16)	1.90(2)	2.7098(15)	146.7(18)
O22B-H22O13	0.933(16)	1.90(2)	2.605(15)	130.7(17)
N11–H16O11	0.82(2)	2.33(2)	3.1181(18)	163.5(18)
N11–H17O2	0.79(2)	2.45(2)	3.1696(19)	153.7(18)
N12–H18O25	0.85(2)	2.12(2)	2.9562(16)	169.2(19)
С12-Н13О26	0.950(18)	2.441(18)	3.3795(18)	169.7(15)
N21–H26O21A	0.833(19)	2.408(19)	3.2155(18)	163.6(16)
N21–H26O21B	0.833(19)	2.38(2)	3.188(16)	162.8(17)
N21–H27O4	0.80(2)	2.34(2)	3.0779(18)	154.3(18)
N22–H28O15 ⁴	0.82(2)	2.19(2)	2.9938(16)	166.4(19)
C22–H23O16 ⁴	0.934(18)	2.494(18)	3.4270(18)	176.8(15)

 Table S3. Geometric parameters of hydrogen bonds in the structure 3.

¹-x, -y+1, -z; ²-x+1, -y+1, -z; ³x+1, y-1, z; ⁴x-1, y+1, z

Compounds and Solvents. Furacin was obtained by vacuum evaporation of 1:1500 pharmaceutical solution in 70% ethanol (Yaroslavl pharmaceutical factory, Russia).

60 wt% hydrogen peroxide was purchased from Fisher Scientific (Loughborough, UK). 96 wt% hydrogen peroxide was prepared by an evaporation method.^[S1] Handling procedures for concentrated hydrogen peroxide are described in detail (danger of explosion!).^[S2,S3]

When dissolving organic compounds in concentrated hydrogen peroxide, the following safety precautions must be observed:

1) The volume of hydrogen peroxide should not exceed 0.5 ml;

2) The temperature of solutions should not rise above 40° C, since with a further increase in temperature, self-accelerating oxidation processes may begin;

3) Only vials with PTFE septa and screw caps with holes should be used to prevent pressure build-up;4) It is not recommended to tightly wrap the caps of the vials during long-term storage.

Yellow-orange crystals of **1**, **2**, and **3** were obtained by cooling to -21°C (for **1**) or -35°C (for **2** and **3**) saturated solutions (rt) of furacin in 96%, 50%, and 20% hydrogen peroxide, respectively. These samples were prepared by dissolving approximately 10-15 mg of furacin in 0.25 ml of hydrogen peroxide solutions in 2 ml vials.

According to our rough estimates, the solubility of furacin in 96% H₂O₂ is approximately an order of magnitude higher than in water or ethanol. Apparently, concentrated hydrogen peroxide is the best solvent for furacin among all known ones.

[S1] M. V. Vener, A. V. Churakov, A. P. Voronin, O. D. Parashchuk, S. V. Artobolevskii, O. A. Alatortsev, D. E. Makhrov, A. G. Medvedev, A. Filarowski, *Molecules* **2022**, *27*, 717(1-13).

[S2] W. C. Schumb, C. N.Satterfield, R. P. Wentworth, *Hydrogen peroxide*, Reinhold publishing corp., New York, **1955**.

[S3] O. Maass, W. H. Hatcher, J. Am. Chem. Soc. 1920, 42, 2548-2569.

	1	2	3
Formula	C ₆ H ₈ N ₄ O ₆	$C_6H_9N_4O_7$	C ₁₂ H ₂₆ N ₈ O ₂₂
Fw	232.16	249.17	634.41
colour, habit	yellow, prism	orange, prism	orange, plate
cryst size (mm)	0.22×0.08×0.04	0.25×0.20×0.20	0.45×0.20×0.03
temperature (K)	100	100	100
crystal system	monoclinic	monoclinic	triclinic
space group	$P2_1/n$	<i>C</i> 2/c	<i>P</i> -1
<i>a</i> (Å)	7.3836(3)	12.6420(4)	8.8432(3)
<i>b</i> (Å)	8.3568(3)	8.4671(3)	12.7456(5)
<i>c</i> (Å)	15.1792(5)	18.6298(6)	13.2427(5)
α (deg)	90	90	105.6813(13)
β (deg)	98.580(1)	101.447(1)	108.5010(13)
γ (deg)	90	90	103.7032(14)
$V(Å^3)$	926.12(6)	1954.49(11)	1274.85(8)
Z	4	8	2
$D_{\rm c} \left({\rm g} \cdot {\rm cm}^{-3} \right)$	1.665	1.694	1.653
μ (mm ⁻¹)	0.150	0.156	0.161
F(000)	480	1032	660
θ range (deg)	2.71 to 28.00	2.23 to 30.00	1.77 to 29.00
refl collcd	12635	15596	19704
indep reflns / R_{int}	2228 / 0.025	2855 / 0.026	6764 / 0.028
reflns $I > 2\sigma(I)$	1987	2473	5311
No of param	178	190	495
GooF on F^2	1.029	1.048	1.027
$R_1 (I \ge 2\sigma(I))$	0.0315	0.0315	0.0426
wR_2 (all data)	0.0799	0.0844	0.1107
largest diff peak /	0.35 / -0.21	0.37 / -0.26	0.45 / -0.39
hole $(e \cdot Å^{-3})$			
CCDC number	2279089	2279090	2279091

Table S4. Crystal data and details of X-ray analysis.

X-ray crystallography

The samples were withdrawn from the crystallization vials using corrosion-resistant steel spatula and immediately placed inside a drop of perfluorinated Fomblin YR-1800 oil on the microscope slides. The appropriate single crystals were mounted on the top of Mitegen MicroLoops and transferred instantly to a cold nitrogen stream on the diffractometer.

Experimental data sets were collected on a Bruker D8 Venture diffractometer using graphite monochromatized Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å). Absorption corrections based on measurements of equivalent reflections were applied.^[S4] The structures were solved by direct methods and refined by full matrix least-squares on F^2 with anisotropic thermal parameters for all non-hydrogen atoms.^[S5] In all cases, partial substitutional disorder of hydrogen peroxide by water molecules^[S6-S9] was not observed since no residual peaks with an intensity more than 0.3 e·A⁻³ were seen in the hydrogen peroxide molecule regions. All hydrogen atoms were found from difference Fourier synthesis and refined with isotropic thermal parameters (except for peroxide molecules in **3**). In the structure **3**, atoms H2, H6 and H8 were found to be equally disordered over two positions; all peroxide H atoms were refined with restrained O-H distances. Details of X-ray studies are listed in Table S4. The single-crystal X-ray

diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS. Crystallographic

data deposited with Cambridge Structural Database (see Table S4).

[S4] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3-10.

[S5] G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.

[S6] A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, CrystEngComm 2005, 7, 664-669.

[S7] B. F. Pedersen, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1972, 28, 746-754.

[S8] B. F. Pedersen, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1972, 28, 1014-1016.

[S9] G. Laus, V. Kahlenberg, K. Wurst, T. Lörting, H. Schottenberger, *CrystEngComm* **2008**, *10*, 1638-1644.

Optical microscopy. Photos of crystalline 1 were taken on Olympus SZ-61TR stereomicroscope equipped with CAM-LC30 camera at 50x magnification. Thermographic movie was recorded on Olympus BX43 microscope equipped with QIClick 1394 video camera and Linkam DSC600 heating stage in temperature range 30-120° C at heating rate 10 deg/sec.

Figure S1. Hydrogen bonded 2D layers parallel to the (101) plane of the lattice in the structure 1.

Figure S2. The [2,2] hydrogen bonding mode for H7-O7-O7A-H7A molecule in the structure 2.

Figure S3. The [2,2] hydrogen bonding mode H1-O1-O2-H2 molecule in the structure 2.

Figure S4. Hydrogen bonded 3D packing motif in the structure 2.

Figure S5. Hydrogen bonds (dashed lines) formed by H1-O1-O2-H2 molecule in 3.

Figure S6. Hydrogen bonds (dashed lines) formed by H3-O3-O4-H4 molecule in 3.

Figure S7. Hydrogen bonds (dashed lines) formed by H5-O5-O6-H6 molecule in 3.

Figure S8. Hydrogen bonds (dashed lines) formed by H7-O7-O8-H8 molecule in 3.

Figure S9. Hydrogen bonds (dashed lines) formed by H9-O9-O10-H10 molecule 3.

Figure S10. Hydrogen bonds (dashed lines) formed by H11-O11-O12-H12 molecule in 3.

