Supporting Information

Recognition sites effects on turn off fluorescence detection of Fe³⁺

Senlin Li,^a Yanan Gu,^a Bo Zhao,^a Haocheng Cai,^a Zhuo Zhao,^a Qiaozhen Sun,^{*a} Bingguang Zhang^{*b}

^aSchool of Materials Science and Engineering, Central South University, Changsha, 410083, China

^bKey Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan, 430074, China

Email: rosesunqz@csu.edu.cn (Q.-Z. Sun); 3092809@mail.scuec.edu.cn (B.-G. Zhang)

Contents

Section 1 General characterizations and structural information	S3
Section 2 Detection of Fe ³⁺	S 6

1			
Cd(1)-N(2)	2.278(3)	Cd(1)-O(2)	2.286(3)
Cd(1)-N(4)#1	2.290(3)	Cd(1)-O(4)	2.340(3)
Cd(1)-O(5)	2.367(3)	Cd(1)-O(1)	2.490(3)
Continue			
N(2)-Cd(1)-O(2)	144.27(11)	N(2)-Cd(1)-N(4)#1	93.02(11)
O(2)-Cd(1)-N(4)#1	93.32(12)	N(2)-Cd(1)-O(4)	92.67(11)
O(2)-Cd(1)-O(4)	98.86(12)	N(4)#1-Cd(1)-O(4)	150.33(11)
N(2)-Cd(1)-O(5)	112.37(12)	O(2)-Cd(1)-O(5)	101.91(11)
N(4)#1-Cd(1)-O(5)	95.74(11)	O(4)-Cd(1)-O(5)	55.36(10)
N(2)-Cd(1)-O(1)	90.14(10)	O(2)-Cd(1)-O(1)	54.16(9)
N(4)#1-Cd(1)-O(1)	97.45(11)	O(4)-Cd(1)-O(1)	111.63(10)
O(5)-Cd(1)-O(1)	153.19(11)		
2			
Cd(1)-O(10)#1	2.261(3)	Cd(1)-O(9)	2.265(3)
Cd(1)-O(3)	2.279(3)	Cd(1)-N(3)	2.318(3)
Cd(1)-N(2)	2.345(3)	Cd(1)-O(2)	2.530(3)
Cd(2)-O(4)	2.313(3)	Cd(2)-N(4)	2.336(3)
Cd(2)-N(5)	2.341(3)	Cd(2)-O(5)#2	2.338(3)
Cd(2)-O(7)#3	2.373(3)	Cd(2)-O(8)#3	2.383(3)
O(10)#1-Cd(1)-O(9)	117.21(10)	O(10)#1-Cd(1)-O(3)	95.54(11)
O(9)-Cd(1)-O(3)	86.80(10)	O(10)#1-Cd(1)-N(3)	89.56(12)
O(9)-Cd(1)-N(3)	89.51(11)	O(3)-Cd(1)-N(3)	174.67(11)
O(10)#1-Cd(1)-N(2)	140.90(12)	O(9)-Cd(1)-N(2)	96.81(10)
O(3)-Cd(1)-N(2)	105.59(11)	N(3)-Cd(1)-N(2)	71.02(12)
O(10)#1-Cd(1)-O(2)	83.39(10)	O(9)-Cd(1)-O(2)	138.62(10)
O(3)-Cd(1)-O(2)	54.20(9)	N(3)-Cd(1)-O(2)	128.24(10)
N(2)-Cd(1)-O(2)	82.99(10)	O(4)-Cd(2)-N(4)	90.81(11)
O(4)-Cd(2)-N(5)	84.05(11)	N(4)-Cd(2)-N(5)	70.17(12)
O(4)-Cd(2)-O(5)#2	126.31(10)	N(4)-Cd(2)-O(5)#2	88.60(12)
N(5)-Cd(2)-O(5)#2	143.97(11)	O(4)-Cd(2)-O(7)#3	83.66(10)
N(4)-Cd(2)-O(7)#3	170.50(12)	N(5)-Cd(2)-O(7)#3	101.48(12)
O(5)#2-Cd(2)-O(7)#3	100.89(11)	O(4)-Cd(2)-O(8)#3	134.07(11)
N(4)-Cd(2)-O(8)#3	127.39(11)	N(5)-Cd(2)-O(8)#3	86.48(11)
O(5)#2-Cd(2)-O(8)#3	83.94(11)	O(7)#3-Cd(2)-O(8)#3	54.53(10)

Section 1 General characterizations and structural information

Table S1 Selected Bond Lengths (Å) and Bond Angles (°) for 1 and 2

Symmetry codes: for 1: -x+1/2, y+1/2, -z-1/2; for 2: #1: -x, -y, -z+1; #2: -x+1, -y, -z+2; #3: x+1, y, z+1.

<i>J</i> 8		8 ()		
D-H…A	d(D-H)	d(HA)	d(DA)	∠(DHA)
1				
OW(1)-HW(1C)O(4)#1	0.85	2.11	2.953(5)	172
OW(1)-HW(1D)OW(3)#2	0.85	2.01	2.855(10)	174
N(3)-H(3A)OW3	0.86	2.08	2.886(8)	156
N(3)-H(3A)OW3'	0.86	2.06	2.915(12)	173
С(11)-Н (11А)О(2)#3	0.96	2.48	3.352(5)	150
С(15)-Н (15А)О(4)#1	0.93	2.56	3.256(4)	132
2				
C(1)-H(1A)O(8)#1	0.93	2.35	3.273(5)	173
C(9)-H(9A)O(3)#2	0.93	2.49	3.370(6)	152
C(21)-H(21A)O(3)#1	0.93	2.52	3.353(6)	149
C(22)-H(22A)O(7)#1	0.93	2.42	3.253(6)	149
C(25)-H(25A)O(2)#3	0.93	2.57	3.374(5)	145
C(32)-H(32A)O(2)#1	0.93	2.44	3.371(5)	175
C(41)-H(41C)S(1)#2	0.96	2.94	3.802(5)	151

 Table S2 Hydrogen bond distances (Å) and bond angles (°) for 1 and 2

Symmetry codes: for 1: #1: -x+1/2, y+1/2, -z+1/2; #2: -x-1, -y, -z-1; #3: x+1, y, z; for 2: #1: -x, -y, -z+1; #2: -x, -y-1, -z+1; #3: x+1, y, z.

Fig. S1 (a) The two-dimensional (2D) plane of compound **1** along c axis; (b) The packing diagram of **1**. The hydrogen bonds are shown in dashed lines.

Fig. S2 (a) The neighboring chains along b axis; (b) The packing diagram of compound 2. The hydrogen bonds are shown in dashed lines.

Fig. S3 The thermal analysis curve of compound 1 (a) and 2 (b).

Fig. S4 PXRD pattern of compound 1 (a) and 2 (b), the immersed sample and the detection of Fe^{3+} and 4-NP.

Section 2 Detection of Fe³⁺

Fig. S5 Luminescent spectra of 1 (a) (λ_{ex} : 302 nm) and 2 (b) (λ_{ex} : 356 nm) in different solvents (Condition: 5 mg 1, 3 mL solvent).

Fig. S6 PXRD pattern of compounds 1 (a) and 2 (b) before and after sonication in water.

Fig. S7 IR spectra of compounds 1 (a) and 2 (b) before and after sonication in water.

Fig. S8 The emission spectra of **1** (a) and **2** (b) immersed in water solution of NaCl and NaNO₃, respectively (Condition: 5 mg **1** (**2**), 3 mL H₂O and 0.02 mmol Na⁺ ion).

Fig. S9 The competition experiments of 1 (a) and 2 (b) for detection of Fe^{3+} ions in the presence of the interfering metal cations (Condition: 5 mg 1 (2), 3 mL H₂O, 10 µL Mⁿ⁺ ions (0.1 M) and 10 µL Fe^{3+} (0.01 M)).

Fig. S10 Fluorescent spectra of 1 (a) and 2 (b) suspension (1.67 mg/mL) upon incremental addition of $Fe^{3+}(0.01 \text{ M})$.

Fig. S11 The fluorescence decay curves of 1 (a) and 2 (b) in Fe^{3+} solution (0.01 M).

Fig. S12 Time-dependent fluorescent quenching detections of 1 (a) and 2 (b) for Fe^{3+} .

To calculate the standard deviation and detection limit of this detection method, 5 mg 1 (2) was well ground and suspended in 3 mL H₂O. Then, Fe³⁺ ion solution (0.01 M) was added into the suspension and the fluorescent intensities were recorded. Standard deviation (σ) was calculated from five blank tests of 1 (2) suspension and the detection limit was calculated via the formula: $3\sigma/k$ (k: slope of the straight line).

Fig. S13 Linear curve of fluorescent intensity of 1 (a) and 2 (b) suspension upon incremental addition of Fe³⁺.

Table S3 Standard deviation calculation

	Fluorescent intensity $(\times 10^4)$
Compound 1	
Test 1	6.510
Test 2	6.522
Test 3	6.512
Test 4	6.515
Test 5	6.518
Standard deviation (σ)	0.0048
Compound 2	
Test 1	6.450
Test 2	6.439
Continue	
Test 3	6.446
Test 4	6.456
Test 5	6.444
Standard deviation (σ)	0.0064

Table S4 Detection limit calculation for Fe³⁺

Compounds	
1	
Slope (k)	2.25×10 ⁶ mM ⁻¹
Detection limit $(3\sigma/k)$	6.40×10 ⁻⁵ mM
2	
Slope (k)	2.51×10 ⁶ mM ⁻¹
Detection limit $(3\sigma/k)$	7.65×10 ⁻⁵ mM

Fig. S14 Three quenching cycles of 1 (a) and 2 (b) suspension after addition of Fe^{3+} .

Fig. S15 UV-vis spectra of metal salts, the excitation and emission spectra of 1 and 2, showing their overlapping.

Fig. S16 XPS for compound 1 and Fe^{3+} incorporating 1 (a), 2 and Fe^{3+} incorporating 2.

Fig. S17 S 2p XPS for 1 and Fe³⁺ incorporating 1 (a), 2 and Fe³⁺ incorporating 2 (b).

Table S5 The comparison of XPS peak-peak displacement values in 1 and 2

	1			2	
Δ	$E_{pyridine}$ Δ	ΔE_{amine} ΔE_d	imethylamino ΔE	pyridine ΔE	dimethylamino
	F/			F)	

N 1s	0.21	0.49	0.06	0.30	0.58
	ΔE_{alkyl}	$\Delta E_{carboxyl}$		ΔE_{alkyl}	$\Delta E_{carboxyl}$
O 1s	0.14	0.29		0.32	0.47
	ΔE			ΔE	
S 2p	0.07			0.43	

Fig. S18 (a) FT-IR spectra for compound 1 and Fe^{3+} incorporated 1; (b) FT-IR spectra for compound 2 and Fe^{3+} incorporated 2.