Supporting information

Synergistic effect of CoII , NiII and FeII/FeIII in trimetallic MOFs for enhancing electrocatalytic water oxidation

Yaling Wu,[†] Zhaopeng Sun,† Lingmeng Yu,† Yingying Chen,† Zhibo Li,† Mengli Li,†

Dan Liu, † Zheng Yan,* † and Xuebo Cao*,†

† College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001,

P. R. China

* Correspondence to: yzheng158@zjxu.edu.cn (Z. Yan); xbcao@zjxu.edu.cn (X. Cao)

Contents:

- **1. Experimental Sections**
- **2. Figures**
- S1. Sample diagram of five MOFs.
- S2. SEM images of **Co-MOF**, **Ni-MOF** and **Co1Ni1-MOF**.
- S3. SEM image and EDS elemental mapping images of $(Co_1Ni_1)_2Fe_1(III)$ -MOF.
- S4. Full XPS Survey spectrum of the five MOFs.
- S5. EDS elemental Analysis of $(Co_1Ni_1)_2Fe_1(\Pi)$ -MOF and $(Co_1Ni_1)_2Fe_1(\Pi)$ -MOF.
- S6. High-resolution spectra of C 1s and O 1s.
- S7. FT-IR spectrum of five MOFs.
- S8. TGA of five MOFs.
- S9. Overpotential at current density of 10 mA cm⁻².
- S10. CV curves of four MOFs.
- S11. Overpotentials of two different valence trimetallic doped MOFs at a current density of 10 mA cm⁻².
- S12. CV curves of $(Co_1Ni_1)_2Fe_1(II)$ -MOF and $(Co_1Ni_1)_2Fe_1(III)$ -MOF.

Experimental Sections

Chemicals: 2, 5-thiophenedicarboxylic (H₂TDC, 98%), cobalt(II) acetate tetrahydrate $(Co(CH_3COO)_2·4H_2O)$, nickel(II) acetate tetrahydrate $(Ni(CH_3COO)_2·4H_2O)$, Iron(II) acetate (Fe(CH₃COO)₂), hydroxydiacetyl iron hydrate (Fe(OH)(CH₃COO)₂·nH₂O) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. NaOH, KOH, EtOH and IrO₂ were from Sinopharm Chemical Reagent Co., Ltd. All aqueous solutions were prepared with DI water. All chemicals are analytical grade and used as received without further purification.

Synthesis of Co-MOF: H₂TDC (1 mmol), $CoCH_3COO$ ₂·4H₂O (1 mmol), H₂O (10) mL), and EtOH (10 mL) were placed into a 50 mL polytetrafluoroethylene-lined reaction kettle. The mixture was stirred at room temperature until dissolved, subjected to 5 minutes of ultrasonic treatment, and stirred again for uniformity. The mixture was then transferred into a stainless steel autoclave and placed in a convection oven. It was heated at 100 °C for 10 hours. After cooling to room temperature, the precipitate was obtained by vacuum filtration and washed multiple times with anhydrous ethanol. Finally, the precipitate was dried in a vacuum drying oven at 60 °C for 24 hours.

Synthesis of Ni-MOF: The preparation steps of Ni-MOF are similar to Co-MOF, with the difference being that $Co(CH_3COO)_2$ 4H₂O (1 mmol) was replaced by $Ni(CH_3COO)_2 \cdot 4H_2O$ (1 mmol).

Synthesis of Co₁Ni₁-MOF: H₂TDC (1 mmol), Ni(CH₃COO)₂·4H₂O (0.5 mmol), $Co(CH_3COO)_2$ ⁻⁴H₂O (0.5 mmol), H₂O (10 mL), and E_tOH (10 mL) were placed into a 50 mL polytetrafluoroethylene-lined reaction kettle. The mixture was stirred at room temperature until dissolved, subjected to 5 minutes of ultrasonic treatment, and stirred again for uniformity. The mixture was then transferred into a stainless steel autoclave and placed in a convection oven. It was heated at 100 °C for 10 hours. After cooling to room temperature, the precipitate was obtained by vacuum filtration and washed multiple times with anhydrous ethanol. Finally, the precipitate was dried in a vacuum drying oven at 60 °C for 24 hours.

Synthesis of (Co_1Ni_1) **,** $Fe_1(II)$ **-MOF:** H_2TDC (1 mmol), $Ni(CH_3COO)$, $4H_2O$ (0.33) mmol), $Co(CH_3COO)_2.4H_2O$ (0.33 mmol), $Fe(CH_3COO)_2$ (0.33 mmol), H_2O (10 mL), and EtOH (10 mL) were placed into a 50 mL polytetrafluoroethylene-lined reaction kettle. The mixture was stirred at room temperature until dissolved, subjected to 5 minutes of ultrasonic treatment, and stirred again for uniformity. The mixture was then transferred into a stainless steel autoclave and placed in a convection oven. It was heated at 100 °C for 10 hours. After cooling to room temperature, the precipitate was obtained by vacuum filtration and washed multiple times with anhydrous ethanol. Finally, the precipitate was dried in a vacuum drying oven at 60 °C for 24 hours.

Synthesis of $(Co_1Ni_1)_2Fe_1(III)$ **-MOF:** The preparation steps of $(Co_1Ni_1)_2Fe_1(III)$ -MOF are similar to $(C_0_1Ni_1)_2Fe_1(II)$ -MOF, with the difference being that Fe(CH₃COO)₂ (0.33 mmol) was replaced by Fe(OH)(CH₃COO)₂·nH₂O (0.33 mmol).

Materials Characterization: The morphology and structure of the MOFs were analyzed by scanning electron microscopy (SEM, Hitachi S-4800) with energy dispersive spectroscopy (EDS). Infrared spectra were carried out by a THERMO NicoletNexus 470 FT-IR spectrometer. XRD-7000 was used to collect the powder Xray diffraction (PXRD) patterns with a Cu Kα radiation source, which was produced by SHIMADZU. Thermogravimetric analysis (TGA) was conducted by the NETZSCH SAT-409PC in a nitrogen flow. The content of transition metals such as Co, Ni, and Fe was measured using X-ray photoelectron spectroscopy (XPS, THERMO ESCALAB 250Xi) and Inductively Coupled Plasma Spectrometer (ICP, Agilent ICP-OES720).

Electrochemical measurement. Electrochemical measurements were implemented in a three-electrode system with an Hg/HgO (0.1 M KOH) electrode as the reference electrode and a carbon rod as the counter electrode, and a glassy carbon (GC) electrode loaded with MOFs was used as the working electrode. All potentials are calculated by the Nernst equation (*E* (V vs. RHE) = *E* (V vs. Hg/HgO) + $0.0977 +$ 0.059 pH), using the reversible hydrogen electrode (RHE) as a reference. The catalyst

ink was prepared by the following method: fully ground 10 mg catalyst and 10 mg conductive carbon powder in a mortar, then take 5 mg of the above-mixed powder into a 2 mL centrifugation tube, 460 μL isopropanol and 40 μL Nafion solution were added and ultrasonication for 45 minutes. Spread 5 μL of homogeneous solution evenly on a freshly polished glassy carbon electrode and place it in an infrared drying oven for complete drying. The catalyst mass loading is approximately 0.36 mg cm⁻². The linear scan voltammetry (LSV) curves of obtained MOFs were recorded with an applied potential window of 0-0.8 V vs. Hg/HgO, the scan rate is 5 mV s^{-1} . The electrochemically active surface areas (ECSAs) are usually estimated from the electrochemical double-layer capacitance (C_{dl}) via collecting cyclic voltammograms $(CVs).$ ^[1-3] The C_{dl} was determined from cyclic voltammograms measured in a non-Faradaic region at different scan rates in the potential range from 0 to 0.1 V versus Hg/HgO. The current differences at 0.1 V against ($v=10$, 20, 30, 40, 80 and 160 mV/s) were fitted to obtain the C_{dl}: C_{dl} = I_c/v , where C_{dl}, I_c, and *v* are the double-layer capacitance (mF/cm²) of the electroactive materials, charging current (mA/cm²), and scan rate (mV/s). The electrochemical impedance spectroscopy (EIS) was recorded with the applied potential of 0.65 V versus RHE, and the frequency scan range was from 10^{-2} Hz to 10^5 Hz.

Fig. S1 Sample diagram. (a) **Co-MOF**, (b) **Ni-MOF**, (c) **Co1Ni1-MOF**, (d) **(Co1Ni1)2Fe1(Ⅱ)- MOF**, (e) **(Co1Ni1)2Fe1(Ⅲ)-MOF**.

Fig. S2 SEM images. (a) **Co-MOF**, (b) **Ni-MOF**, (c) **Co1Ni1-MOF**.

Fig. S3 (a) SEM image of **(Co1Ni1)2Fe1(Ⅲ)-MOF**. (b) EDS layered images and elemental

mapping images of **(Co1Ni1)2Fe1(Ⅲ)-MOF**.

Fig. S4 Full XPS Survey spectrum of the five MOFs.

Fig. S5 EDS Elemental Analysis. (a) $(Co_1Ni_1)_2Fe_1(II)$ -MOF, (b) $(Co_1Ni_1)_2Fe_1(III)$ -MOF.

Fig. S6 High-resolution spectra of five MOFs. (a) C 1s, (b) O 1s.

Fig. S7 FT-IR spectrum of five MOFs.

Fig. S8 TGA of five MOFs.

Fig. S9 Overpotential at current density of 10 mA cm⁻².

Fig. S10 CV curves. (a) **Co-MOF**, (b) **Ni-MOF**, (c) **Co1Ni1-MOF**, (d) **(Co1Ni1)2Fe1(Ⅱ)-MOF**.

Fig. S11 Overpotentials of two different valence trimetallic doped MOFs at a current density of 10

mA cm⁻².

Fig. S12 CV curves of two MOFs. (a) $(Co_1Ni_1)_2Fe_1(II)$ -MOF, (b) $(Co_1Ni_1)_2Fe_1(III)$ -MOF.

Fig. S13 Comparison of the (a) XRD patterns and (b) XPS spectra of **(Co1Ni1)2Fe1(Ⅱ)-MOF**

Fig. S14 Comparison of the (a) XRD patterns and (b) XPS spectra of **(Co1Ni1)2Fe1(Ⅲ)-**

before and after OER reaction.

MOF before and after OER reaction.

$(Co1Ni1)2Fe1(II)$ -MOF	FWHM eV	Area (P) CPS.eV	Atomic $\%$
Co	3.14	200608.36	5.15
Ni	2.25	197587.82	4.83
Fe	6.02	167602.53	5.10

Table S1. XPS high-resolution spectrum of **(Co1Ni1)2Fe(Ⅱ)-MOF** (Co/Ni/Fe=5.15/5.10/4.83)

Table S2. XPS high-resolution spectrum of **(Co1Ni1)2Fe1(Ⅲ)-MOF** (Co/Ni/Fe=4.80/4.75/5.16).

FWHM eV	Area (P) CPS.eV	Atomic $\%$
3.74	177222.22	4.80
2.25	184413.36	4.75
490	160787.21	5.16

Table S4. ICP analysis for **(Co1Ni1)2Fe1(III)-MOF** (Co/Ni/Fe=2.073/2.046/2.209).

Table S5. Electrocatalytic OER activities of MOF-based and the state-of-the-art non-

MOFcatalysts in 0.1 M alkaline electrolyte between recently reported studies and this work.

References

[1] Li, F.-L.; Shao, Q.; Huang, X.-Q.; Lang, J.-P. *Angew. Chem. Int.* **2018**, 57, 1888- 1892.

[2] C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, *J. Am. Chem. Soc.* **2015**, 137, 4347-4357.

[3] Chen, R.; Wang, H.-Y.; Miao, J.; Yang, H.; Liu, B.; *Nano Energy.* **2015**, 11, 333- 340.

[4] Wu, J.-Q.; Zhao, Z.-H.; Hua, Y.-W.; Wu, Y.-L.; Ye, S.-Y.; Qian, J.-T.; Li, M.-L.; Zhu, L.-W.; Yan, Z.; Cao, X. *Inorg. Chem*. **2023**, *62*, 15641−15650.

[5] Zhang, H.-D.; Wu, Y.-L.; Ye, S.-Y.; Hua, Y.-W.; You, X.-X.; Yan, Z.; Li, M.-L.; Liu, D.; Meng, Y.; Cao, X. *ChemElectroChem* **2022**, *9*, e202200246.

- [6] Lin, R.; Li, X.; Krajnc, A.; Li, Z.; Li, M.; Wang, W.; Zhuang, L.; Smart, S.; Zhu,
- Z.; Appadoo, D.; Harmer, JR.; Wang, Z.; Buzanich, AG.; Beyer, S.; Wang, L.; Mali,
- G.; Bennett, TD.; Chen, V.; Hou, J. *Angew. Chem., Int. Ed*. **2022**, *61*, e202112880.
- [7] Kang, J.; Lee, M. J.; Oh, N. G.; Shin, J.; Kwon, S. J.; Chun, H.; Kim, S. J; Yun, H.; Jo, H.; Ok, K. M.; Do, J. *Chem. Mater*. **2021**, *33*, 2804–2813.
- [8] Wang, H.; Zhang, X.; Yin, F.; Chu, W.; Chen, B. *J Mater. Chem. A*, **2020**, *8*, 22111–22123
- [9] Zhou, W.; Huang, D.; Wu, Y.; Zhao, J.; Wu, T.; Zhang, J.; Li, D.; Sun, C.; Feng, P.; Bu, X. *Angew. Chem., Int. Ed.* **2019**, *58*, 4227-4231.

[10] Gao, J.; Cong, J.; Wu, Y.; Sun, L.; Yao, J.; Chen, B. *ACS Appl. Energy Mater.* **2018**, *1*, 5140-5144.

[11] Jayaramulu, K.; Masa, J.; Morales, D. M.; Tomanec, O.; Ranc, V.; Petr, M.; Wilde, P.; Chen, Y.-T.; Zboril, R.; Schuhmann, W.; Fischer, R. A. *Adv. Sci.* **2018**, *5*, 1801029.

[12] Huang, J.; Li, Y.; Huang, R.-K.; He, C.-T.; Gong, L.; Hu, Q.; Wang, L.; Xu, Y.- T.; Tian, X.-Y.; Liu, S.-Y.; Ye, Z.-M.; Wang, F.; Zhou, D.-D.; Zhang, W.-X.; Zhang, J.-P. *Angew. Chem., Int. Ed.* **2018**, *57*, 4632-4636.

[13] Yang, C.; Cai, W.-J.; Yu, B.-B.; Qiu, H.; Li, M.-L.; Zhu, L.-W.; Yan, Z.; Hou, L.; Wang, Y.-Y. *Catal. Sci. Technol*. **2020**, *10*, 3897-3903.

[14] Shen, J.-Q.; Liao, P.-Q.; Zhou, D.-D.; He, C.-T.; Wu, J.-X.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. *J. Am. Chem. Soc*. **2017**, *139*, 1778-1781.

[15] Zhan, G.; Fan, L.; Zhao, F.; Huang, Z.; Chen, B.; Yang, X.; Zhou, S.-f. *Adv. Funct. Mater.* **2019**, *29*, 1806720.

[16] Zhao, L.; Dong, B.; Li, S.; Zhou, L.; Lai, L.; Wang, Z.; Zhao, S.; Han, M.; Gao, K.; Lu, M.; Xie, X.; Chen, B.; Liu, Z.; Wang, X.; Zhang, H.; Li, H.; Liu, J.; Zhang, H.; Huang, X.; Huang, W. *ACS Nano* **2017**, *11*, 5800-5807.

[17] Jiang, Z.; Ge, L.; Zhuang, L.; Li, M.; Wang, Z.; Zhu, Z. *ACS Appl. Mater. Interfaces* **2019**, *11*, 44300-44307.

[18] Lu, X.-F.; Liao, P.-Q.; Wang, J.-W.; Wu, J.-X.; Chen, X.-W.; He, C.-T.; Zhang, J.- P.; Li G.-R.; Chen, X.-M. *J. Am. Chem. Soc*. **2016**, 138, 8336–8339.

[19] Manna, P.; Debgupta, J.; Bose, S.; Das, S. K. *Angew. Chem., Int. Ed*. **2016**, 55, 2425-2430.

[20] Magnier, L.; Cossard, G.; Martin, V.; Pascal, C.; Roche, V.; Sibert, E.; Shchedrina, I.; Bousquet, R.; Parry, V.; Chatenet, M. *Nat. Mater.* **2024**, 23, 252-261.

[21] Xiang, Q.; Li, F.; Chen, W.-L.; Ma, Y.-L.; Wu, Y.; Gu, X.; Qin, Y.; Tao, P.; Song, C.-Y.; Shang, W.; Zhu, H.; Deng, T.; Wu, J.-B. *ACS Energy Lett.* **2018**, 3, 10, 2357-2365.

[22] Louie, M. W.; Bell, A. T. *J. Am. Chem. Soc.* **2013**, 135, 12329-12337.

[23] Dionigi, F.; Zeng, Z.; Sinev, I.; Merzdort, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D.-X.; Bergmann, A.; Drnec, J.; Araujo, J. F.; Gliech, M.; Teschner, D.; Zhu, J.; Li, W.-X.; Greeley, J.; Cuenya, B. R.; Strasser, P. *Nat Commun.* **2020,** 11, 2522.

[24] Schäfer, H.; Sadaf, S.; Walder, L.; Kuepper, K.; Dingklage, S.; Wollschläger, J.; Schneider, L.; Steinhart, M.; Hardege, J.; Daum, D. *Energy Environ. Sci.* **2015**, 8, 2685-2697.

[25] Han, W.-J.; Kuepper, K.; Hou, P.-L.; Akram, W.; Eickmeier, H.; Hardege, J.; Steinhart, M.; Schäfer, H. *Chem. Sus. Chem.* **2018**, 11, 3661-3671.

[26] Liu, L.-X.; Liu, W.; Ko, M.; Park, M.; Kilm, M. G.; Oh, P.; Chase, S.; Park, S.; Casimir, A.; Wu, G.; Cho, *J. Adv. Funct. Mater.* **2015**, 25, 5799-5808.