Supporting information

Synergistic effect of Co^{II}, Ni^{II} and Fe^{II}/Fe^{III} in trimetallic MOFs for enhancing electrocatalytic water oxidation

Yaling Wu,[†] Zhaopeng Sun,[†] Lingmeng Yu,[†] Yingying Chen,[†] Zhibo Li,[†] Mengli Li,[†]

Dan Liu,[†] Zheng Yan,^{*}[†] and Xuebo Cao^{*,†}

[†] College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001,

P. R. China

* Correspondence to: yzheng158@zjxu.edu.cn (Z. Yan); xbcao@zjxu.edu.cn (X. Cao)

Contents:

- **1. Experimental Sections**
- 2. Figures
- S1. Sample diagram of five MOFs.
- S2. SEM images of Co-MOF, Ni-MOF and Co₁Ni₁-MOF.
- S3. SEM image and EDS elemental mapping images of (Co₁Ni₁)₂Fe₁(III)-MOF.
- S4. Full XPS Survey spectrum of the five MOFs.
- S5. EDS elemental Analysis of (Co₁Ni₁)₂Fe₁(II)-MOF and (Co₁Ni₁)₂Fe₁(III)-MOF.
- S6. High-resolution spectra of C 1s and O 1s.
- S7. FT-IR spectrum of five MOFs.
- S8. TGA of five MOFs.
- S9. Overpotential at current density of 10 mA cm⁻².
- S10. CV curves of four MOFs.
- S11. Overpotentials of two different valence trimetallic doped MOFs at a current density of 10 mA cm⁻².
- S12. CV curves of (Co₁Ni₁)₂Fe₁(II)-MOF and (Co₁Ni₁)₂Fe₁(III)-MOF.

Experimental Sections

Chemicals: 2, 5-thiophenedicarboxylic (H₂TDC, 98%), cobalt(II) acetate tetrahydrate $(Co(CH_3COO)_2 \cdot 4H_2O)$, nickel(II) acetate tetrahydrate $(Ni(CH_3COO)_2 \cdot 4H_2O)$, Iron(II) acetate (Fe(CH₃COO)₂), hydroxydiacetyl iron hydrate (Fe(OH)(CH₃COO)₂ \cdot nH₂O) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. NaOH, KOH, EtOH and IrO₂ were from Sinopharm Chemical Reagent Co., Ltd. All aqueous solutions were prepared with DI water. All chemicals are analytical grade and used as received without further purification.

Synthesis of Co-MOF: H_2TDC (1 mmol), $Co(CH_3COO)_2 \cdot 4H_2O$ (1 mmol), H_2O (10 mL), and EtOH (10 mL) were placed into a 50 mL polytetrafluoroethylene-lined reaction kettle. The mixture was stirred at room temperature until dissolved, subjected to 5 minutes of ultrasonic treatment, and stirred again for uniformity. The mixture was then transferred into a stainless steel autoclave and placed in a convection oven. It was heated at 100 °C for 10 hours. After cooling to room temperature, the precipitate was obtained by vacuum filtration and washed multiple times with anhydrous ethanol. Finally, the precipitate was dried in a vacuum drying oven at 60 °C for 24 hours.

Synthesis of Ni-MOF: The preparation steps of Ni-MOF are similar to Co-MOF, with the difference being that $Co(CH_3COO)_2 \cdot 4H_2O$ (1 mmol) was replaced by $Ni(CH_3COO)_2 \cdot 4H_2O$ (1 mmol).

Synthesis of Co₁Ni₁-MOF: H₂TDC (1 mmol), Ni(CH₃COO)₂·4H₂O (0.5 mmol), Co(CH₃COO)₂·4H₂O (0.5 mmol), H₂O (10 mL), and E_tOH (10 mL) were placed into a 50 mL polytetrafluoroethylene-lined reaction kettle. The mixture was stirred at room temperature until dissolved, subjected to 5 minutes of ultrasonic treatment, and stirred again for uniformity. The mixture was then transferred into a stainless steel autoclave and placed in a convection oven. It was heated at 100 °C for 10 hours. After cooling to room temperature, the precipitate was obtained by vacuum filtration and washed multiple times with anhydrous ethanol. Finally, the precipitate was dried in a vacuum drying oven at 60 °C for 24 hours.

Synthesis of $(Co_1Ni_1)_2Fe_1(II)$ -MOF: H₂TDC (1 mmol), Ni(CH₃COO)₂·4H₂O (0.33 mmol), Co(CH₃COO)₂·4H₂O (0.33 mmol), Fe(CH₃COO)₂ (0.33 mmol), H₂O (10 mL), and EtOH (10 mL) were placed into a 50 mL polytetrafluoroethylene-lined reaction kettle. The mixture was stirred at room temperature until dissolved, subjected to 5 minutes of ultrasonic treatment, and stirred again for uniformity. The mixture was then transferred into a stainless steel autoclave and placed in a convection oven. It was heated at 100 °C for 10 hours. After cooling to room temperature, the precipitate was obtained by vacuum filtration and washed multiple times with anhydrous ethanol. Finally, the precipitate was dried in a vacuum drying oven at 60 °C for 24 hours.

Synthesis of $(Co_1Ni_1)_2Fe_1(III)$ -MOF: The preparation steps of $(Co_1Ni_1)_2Fe_1(III)$ -MOF are similar to $(Co_1Ni_1)_2Fe_1(II)$ -MOF, with the difference being that $Fe(CH_3COO)_2$ (0.33 mmol) was replaced by $Fe(OH)(CH_3COO)_2 \cdot nH_2O$ (0.33 mmol).

Materials Characterization: The morphology and structure of the MOFs were analyzed by scanning electron microscopy (SEM, Hitachi S-4800) with energy dispersive spectroscopy (EDS). Infrared spectra were carried out by a THERMO NicoletNexus 470 FT-IR spectrometer. XRD-7000 was used to collect the powder X-ray diffraction (PXRD) patterns with a Cu Kα radiation source, which was produced by SHIMADZU. Thermogravimetric analysis (TGA) was conducted by the NETZSCH SAT-409PC in a nitrogen flow. The content of transition metals such as Co, Ni, and Fe was measured using X-ray photoelectron spectroscopy (XPS, THERMO ESCALAB 250Xi) and Inductively Coupled Plasma Spectrometer (ICP, Agilent ICP-OES720).

Electrochemical measurement. Electrochemical measurements were implemented in a three-electrode system with an Hg/HgO (0.1 M KOH) electrode as the reference electrode and a carbon rod as the counter electrode, and a glassy carbon (GC) electrode loaded with MOFs was used as the working electrode. All potentials are calculated by the Nernst equation (E (V vs. RHE) = E (V vs. Hg/HgO) + 0.0977 + 0.059 pH), using the reversible hydrogen electrode (RHE) as a reference. The catalyst ink was prepared by the following method: fully ground 10 mg catalyst and 10 mg conductive carbon powder in a mortar, then take 5 mg of the above-mixed powder into a 2 mL centrifugation tube, 460 µL isopropanol and 40 µL Nafion solution were added and ultrasonication for 45 minutes. Spread 5 µL of homogeneous solution evenly on a freshly polished glassy carbon electrode and place it in an infrared drying oven for complete drying. The catalyst mass loading is approximately 0.36 mg cm⁻². The linear scan voltammetry (LSV) curves of obtained MOFs were recorded with an applied potential window of 0-0.8 V vs. Hg/HgO, the scan rate is 5 mV s⁻¹. The electrochemically active surface areas (ECSAs) are usually estimated from the electrochemical double-layer capacitance (Cdl) via collecting cyclic voltammograms (CVs).^[1-3] The C_{dl} was determined from cyclic voltammograms measured in a non-Faradaic region at different scan rates in the potential range from 0 to 0.1 V versus Hg/HgO. The current differences at 0.1 V against (v=10, 20, 30, 40, 80 and 160 mV/s) were fitted to obtain the C_{dl} : $C_{dl} = I_c/v$, where C_{dl} , I_c , and v are the double-layer capacitance (mF/cm²) of the electroactive materials, charging current (mA/cm²), and scan rate (mV/s). The electrochemical impedance spectroscopy (EIS) was recorded with the applied potential of 0.65 V versus RHE, and the frequency scan range was from 10^{-2} Hz to 10^{5} Hz.

Fig. S1 Sample diagram. (a) Co-MOF, (b) Ni-MOF, (c) Co₁Ni₁-MOF, (d) $(Co_1Ni_1)_2Fe_1(II)$ -MOF, (e) $(Co_1Ni_1)_2Fe_1(III)$ -MOF.

Fig. S2 SEM images. (a) Co-MOF, (b) Ni-MOF, (c) Co₁Ni₁-MOF.

Fig. S3 (a) SEM image of (Co1Ni1)2Fe1(III)-MOF. (b) EDS layered images and elemental

mapping images of (Co1Ni1)2Fe1(III)-MOF.

Fig. S4 Full XPS Survey spectrum of the five MOFs.

Fig. S5 EDS Elemental Analysis. (a) (Co₁Ni₁)₂Fe₁(II)-MOF, (b) (Co₁Ni₁)₂Fe₁(III)-MOF.

Fig. S6 High-resolution spectra of five MOFs. (a) C 1s, (b) O 1s.

Fig. S7 FT-IR spectrum of five MOFs.

Fig. S8 TGA of five MOFs.

Fig. S9 Overpotential at current density of 10 mA cm⁻².

Fig. S10 CV curves. (a) Co-MOF, (b) Ni-MOF, (c) Co₁Ni₁-MOF, (d) (Co₁Ni₁)₂Fe₁(II)-MOF.

Fig. S11 Overpotentials of two different valence trimetallic doped MOFs at a current density of 10

mA cm⁻².

Fig. S12 CV curves of two MOFs. (a) $(Co_1Ni_1)_2Fe_1(II)$ -MOF, (b) $(Co_1Ni_1)_2Fe_1(III)$ -MOF.

Fig. S13 Comparison of the (a) XRD patterns and (b) XPS spectra of (Co₁Ni₁)₂Fe₁(II)-MOF

Fig. S14 Comparison of the (a) XRD patterns and (b) XPS spectra of (Co1Ni1)2Fe1(III)-

MOF before and after OER reaction.

before and after OER reaction.

(Co ₁ Ni ₁) ₂ Fe ₁ (II)-MOF	FWHM eV	Area (P) CPS.eV	Atomic %
Со	3.14	200608.36	5.15
Ni	2.25	197587.82	4.83
Fe	6.02	167602.53	5.10

Table S1. XPS high-resolution spectrum of (Co₁Ni₁)₂Fe(II)-MOF (Co/Ni/Fe=5.15/5.10/4.83)

Table S2. XPS high-resolution spectrum of (Co₁Ni₁)₂Fe₁(III)-MOF (Co/Ni/Fe=4.80/4.75/5.16).

$(Co_1Ni_1)_2Fe_1(III)$ -MOF	FWHM eV	Area (P) CPS.eV	Atomic %
Со	3.74	177222.22	4.80
Ni	2.25	184413.36	4.75
Fe	4.90	160787.21	5.16

Table S3. ICP analysis for (Co ₁ Ni ₁) ₂ Fe ₁ (II)-MOF (Co/Ni/Fe=1.983/1.973/2.05
--

				Instrumen	
$(Co_1Ni_1)_2Fe_1(II)$ -	Sampling	Volum	Coefficie	t readings	Molar
MOF	quality	e	nt of dilution	(mg/L)	ratio
	(g)	(mL)			
Со	0.0346	25	100	1.6176	1.983
Ni	0.0346	25	100	1.6025	1.973
Fe	0.0346	25	100	1.5889	2.050

Table S4. ICP analysis for (Co ₁ Ni ₁) ₂ Fe ₁ (III)-MOF (Co/Ni/Fe=2.073/2.046/2.209).
--

				Instrume	
$(Co_1Ni_1)_2Fe_1(III)$ -	Sampling	Vol	Coefficie	nt readings	Molar
MOF	quality	ume	nt of dilution	(mg/L)	ratio
	(g)	(m			
		L)			
Со	0.0376	25	100	1.8375	2.073
Ni	0.0376	25	100	1.8059	2.046
Fe	0.0376	25	100	1.8606	2.209

Catabyst	Over potential	Tafel slope	Substants	Daf	
Cululysi	(a) 10 mA cm ⁻²	(mV dec ⁻¹)	Substrute	Ref.	
β-Co(OH) ₂ /Co-MOF	405	124	GC	[4]	
Ni _{0.8} Fe _{0.2} -MOF-B	301	62	GC	[5]	
ZIF-62-(Co)-Fe-CC	335	44.3	CC	[6]	
[Co ₇ (t-ca) ₁₄ (H ₂ O) ₂]	361	53	GC	[7]	
Co-BTC-IMI	360	88	RDE	[8]	
CTGU-10c2	240	58	GC	[9]	
CoFe-PYZ	300	44	GC	[7]	
2D CoZIF-9(III) sheets	380	55	GC	[8]	
2D-Co-NS	310	81	GC	[9]	
CoFe-MOF	355	49.05	GC	[10]	
Fe ₃ -Co ₂	283	43	GC	[11]	
Co:Fe ₃	453	63	GC	[12]	
Fe ₃ -Fe	460@1mA cm ⁻²	137	GC	[13]	
Fe ₃	482@1mA cm ⁻²	112	GC	[14]	
FeCo-MNS	298	21.6	GC	[15]	
CoBDC	490	48.8	GC	[16]	
MOF-H ₂	337(η _j =15)	N/A	GC	[17]	
MAF-X27-OH	461	66	GC	[18]	
Co-WOC-1	390@1mA cm ⁻²	128	GC	[19]	
W-625 ^a	327±7	-	-	[20]	
W-718a	320+10	_	_	[20]	

Table S5. Electrocatalytic OER activities of MOF-based and the state-of-the-art non-

MOFcatalysts in 0.1 M alkaline electrolyte between recently reported studies and this work.

(Co ₁ Ni ₁) ₂ Fe(III)-MOF	309	97.04	GC	This work
(Co1Ni1)2Fe(II)-MOF	295	48.48	GC	This work
IrO_2 , 210 µg cm ⁻²	330	-	GC	[26]
steek (phosphorization)	326	68.7	-	[25]
Three-dimensional S235				[0]
(Elox300)	269	66	-	[24]
AISI 304 activated steel				
NiFe LDH	348	-	RDE	[23]
Ni(OH) ₂	573	-	RDE	[23]
(Fe/Ni=0.67)	280	-	-	[22]
Electrodeposited Fe-Ni film				
Fe-Ni LDH	130	-	e-Ni foil ^b	[21]
IrO ₂ , 100 µg cm ⁻²	354±3	-	GC	[20]
IrO_2 , 20 µg cm ⁻²	400±10	-	GC	[20]
W-316L ^a	340±20	-	-	[20]
W-286 ^a	339±4	-	-	[20]
W-825 ^a	322±3	-	-	[20]

References

[1] Li, F.-L.; Shao, Q.; Huang, X.-Q.; Lang, J.-P. Angew. Chem. Int. 2018, 57, 1888-1892.

[2] C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, *J. Am. Chem. Soc.* **2015**, 137, 4347-4357.

[3] Chen, R.; Wang, H.-Y.; Miao, J.; Yang, H.; Liu, B.; *Nano Energy*. **2015**, 11, 333-340.

[4] Wu, J.-Q.; Zhao, Z.-H.; Hua, Y.-W.; Wu, Y.-L.; Ye, S.-Y.; Qian, J.-T.; Li, M.-L.; Zhu, L.-W.; Yan, Z.; Cao, X. *Inorg. Chem.* **2023**, *62*, 15641–15650.

[5] Zhang, H.-D.; Wu, Y.-L.; Ye, S.-Y.; Hua, Y.-W.; You, X.-X.; Yan, Z.; Li, M.-L.; Liu, D.; Meng, Y.; Cao, X. ChemElectroChem 2022, 9, e202200246.

- [6] Lin, R.; Li, X.; Krajnc, A.; Li, Z.; Li, M.; Wang, W.; Zhuang, L.; Smart, S.; Zhu,
- Z.; Appadoo, D.; Harmer, JR.; Wang, Z.; Buzanich, AG.; Beyer, S.; Wang, L.; Mali,
- G.; Bennett, TD.; Chen, V.; Hou, J. Angew. Chem., Int. Ed. 2022, 61, e202112880.

[7] Kang, J.; Lee, M. J.; Oh, N. G.; Shin, J.; Kwon, S. J.; Chun, H.; Kim, S. J; Yun, H.;
Jo, H.; Ok, K. M.; Do, J. *Chem. Mater.* 2021, *33*, 2804–2813.

[8] Wang, H.; Zhang, X.; Yin, F.; Chu, W.; Chen, B. J Mater. Chem. A, 2020, 8, 22111–22123

[9] Zhou, W.; Huang, D.; Wu, Y.; Zhao, J.; Wu, T.; Zhang, J.; Li, D.; Sun, C.; Feng,
P.; Bu, X. Angew. Chem., Int. Ed. 2019, 58, 4227-4231.

[10] Gao, J.; Cong, J.; Wu, Y.; Sun, L.; Yao, J.; Chen, B. ACS Appl. Energy Mater.
2018, 1, 5140-5144.

[11] Jayaramulu, K.; Masa, J.; Morales, D. M.; Tomanec, O.; Ranc, V.; Petr, M.;
Wilde, P.; Chen, Y.-T.; Zboril, R.; Schuhmann, W.; Fischer, R. A. *Adv. Sci.* 2018, *5*, 1801029.

[12] Huang, J.; Li, Y.; Huang, R.-K.; He, C.-T.; Gong, L.; Hu, Q.; Wang, L.; Xu, Y.-T.; Tian, X.-Y.; Liu, S.-Y.; Ye, Z.-M.; Wang, F.; Zhou, D.-D.; Zhang, W.-X.; Zhang, J.-P. Angew. Chem., Int. Ed. 2018, 57, 4632-4636.

[13] Yang, C.; Cai, W.-J.; Yu, B.-B.; Qiu, H.; Li, M.-L.; Zhu, L.-W.; Yan, Z.; Hou, L.;
Wang, Y.-Y. *Catal. Sci. Technol.* 2020, *10*, 3897-3903.

[14] Shen, J.-Q.; Liao, P.-Q.; Zhou, D.-D.; He, C.-T.; Wu, J.-X.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. J. Am. Chem. Soc. 2017, 139, 1778-1781.

[15] Zhan, G.; Fan, L.; Zhao, F.; Huang, Z.; Chen, B.; Yang, X.; Zhou, S.-f. Adv. Funct. Mater. 2019, 29, 1806720.

[16] Zhao, L.; Dong, B.; Li, S.; Zhou, L.; Lai, L.; Wang, Z.; Zhao, S.; Han, M.; Gao,
K.; Lu, M.; Xie, X.; Chen, B.; Liu, Z.; Wang, X.; Zhang, H.; Li, H.; Liu, J.; Zhang, H.;
Huang, X.; Huang, W. ACS Nano 2017, 11, 5800-5807.

[17] Jiang, Z.; Ge, L.; Zhuang, L.; Li, M.; Wang, Z.; Zhu, Z. ACS Appl. Mater. Interfaces 2019, 11, 44300-44307.

[18] Lu, X.-F.; Liao, P.-Q.; Wang, J.-W.; Wu, J.-X.; Chen, X.-W.; He, C.-T.; Zhang, J.-P.; Li G.-R.; Chen, X.-M. J. Am. Chem. Soc. 2016, 138, 8336–8339.

[19] Manna, P.; Debgupta, J.; Bose, S.; Das, S. K. Angew. Chem., Int. Ed. 2016, 55, 2425-2430.

[20] Magnier, L.; Cossard, G.; Martin, V.; Pascal, C.; Roche, V.; Sibert, E.; Shchedrina, I.; Bousquet, R.; Parry, V.; Chatenet, M. *Nat. Mater.* **2024**, 23, 252-261.

[21] Xiang, Q.; Li, F.; Chen, W.-L.; Ma, Y.-L.; Wu, Y.; Gu, X.; Qin, Y.; Tao, P.; Song, C.-Y.; Shang, W.; Zhu, H.; Deng, T.; Wu, J.-B. ACS Energy Lett. 2018, 3, 10, 2357-2365.

[22] Louie, M. W.; Bell, A. T. J. Am. Chem. Soc. 2013, 135, 12329-12337.

[23] Dionigi, F.; Zeng, Z.; Sinev, I.; Merzdort, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D.-X.; Bergmann, A.; Drnec, J.; Araujo, J. F.; Gliech, M.; Teschner, D.; Zhu, J.; Li, W.-X.; Greeley, J.; Cuenya, B. R.; Strasser, P. *Nat Commun.* **2020**, 11, 2522.

[24] Schäfer, H.; Sadaf, S.; Walder, L.; Kuepper, K.; Dingklage, S.; Wollschläger, J.; Schneider, L.; Steinhart, M.; Hardege, J.; Daum, D. *Energy Environ. Sci.* **2015**, *8*, 2685-2697.

[25] Han, W.-J.; Kuepper, K.; Hou, P.-L.; Akram, W.; Eickmeier, H.; Hardege, J.; Steinhart, M.; Schäfer, H. *Chem. Sus. Chem.* **2018**, 11, 3661-3671.

[26] Liu, L.-X.; Liu, W.; Ko, M.; Park, M.; Kilm, M. G.; Oh, P.; Chase, S.; Park, S.;
 Casimir, A.; Wu, G.; Cho, *J. Adv. Funct. Mater.* 2015, 25, 5799-5808.