Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry

Supporting information

K⁺ regulated vanadium oxide heterostructure enables high-performance aqueous Zinc-ion battery

Haibing Li ^{a*}, Liyun Zhu ^a, Weijun Fan ^a, Yi Xiao ^b, Jiadong Wu ^c, Hongyu Mi ^d, Fumin Zhang ^e, Linyu Yang ^{c*}

^a College of Modern Science and Technology, China Jiliang University, Jinhua
322000, PR China. E-mail: lihaibing18@mails.ucas.ac.cn;

^b Division of International Cooperation, Science&Technology Department of Xinjiang

Uygur Autonomous Region, Urumqi 830011, P.R. China.

^c School of physics and technology, Xin Jiang University, Urumqi, Xinjiang 830046,

China. E-mail: yanglinyu0222@sina.com.cn;

^d School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China.

 ^e State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, P.R. China.

Fig. S1 Shifts of the diffraction peak of KVO/VO₂-S1, KVO/VO₂-S2 and KVO/VO₂-S3.

Fig. S2 SEM images and corresponding EDS spectra of KVO/VO_2 -S2.

Fig. S3 EDS of the KVO/VO₂-S1, KVO/VO₂-S2 and KVO/VO₂-S3, respectively.

Fig. S4 High-resolution V 2p spectra of the KVO/VO₂-S1 and KVO/VO₂-S3 sample, respectively.

Fig. S5 (a) GCD profiles at current density of 0.2 A g^{-1} , (b) rate performance at different current density of 0.2, 0.5, 1, 2, 3 A g^{-1} , (c) long cyclic performance of KVO/VO₂-S3 at a current density of 3 A g^{-1} .

Fig. S6 (a) GCD profiles at current density of 0.2 A g^{-1} , (b) rate performance at different current density of 0.2, 0.5, 1, 2, 3 A g^{-1} , (c) long cyclic performance of KVO/VO₂-S1 at a current density of 3 A g^{-1} .

Fig. S7 (a) CV curves under different scan rate from 0.4-1.6 mV s⁻¹. (b) calculated b value by log(i) vs log(v) plot at special peak currents. (c) CV curve with the pseudocapacitive ratio presented by the shaded area at scan rate of 0.4 mV s⁻¹. (d) percents of surface–controlled capacities and diffusion–controlled capacities at a scan rate from 0.4 to 1.6 mV s⁻¹ of KVO/VO₂-S3 cathode.

Fig. S8 The ex-situ XRD pattern of KVO/VO_2 -S2 cathode at different charge/discharge states (pristine and 50th C-1.5V).

Fig. S9 Cyclic performance of KVO/VO_2 -S2 cathode at different n/p ratios and areal current density.

Table 51. Ferrormance of comparison.							
Materials	Current	Special	Current density(A g-	Capacity			
Wiaterials	density(A g ⁻¹)	capacity(mAh g ⁻¹)	¹)/cycle number	retention			
$V_2O_5^{-18}$	0.2	403	1/1000	70.4%			
K ₂ V ₃ O ₈ nanoflower ⁴⁰	0.1	302.8	02.8 4.0/2000				
V_2O_5/V_2C heterostructure ³⁴	1.0	412.0 20/6000		53.2			
V_2O_5/VO_2 heterostructure ⁴¹	0.2	453.6	1.0/800	85.6			
$Mn_xV_2O_6+V_2C$ heterostructure ³⁶	0.1	437.0	2.0/1000	72%			
$Mn_{2}V_{2}O_{7}+V_{2}O_{3}^{\ 42}$	0.5	312.0	1.0/1000	87%			
MnO ₂ +PVP ⁴³	0.125	317.2	10/20000	100%			
ZnNi _{0.5} MnO/NCNTs ⁴⁴	0.1	239.2	1.0/3000	45%			
NaV ₃ O ₈ ·1.5H ₂ O ⁴⁵	0.1	334.4	1.0/3000	87%			
$Zn_{0.52}V_2O_5$ 46	0.2	286.2	20/18000	95.4%			
PEO-LiV ₃ O ₈ superlattice nanosheets ⁴⁷	0.1	438.1	10/3000	89.8%			
$Ca_{0.67}V_8O_{20}{\cdot}3.5H_2O$ nanobelts 48	0.1	466.0	5/2000	74%			
F-doped NH ₄ V ₄ O ₁₀ ²⁷	0.1	465.0	4/2000	88%			
$\frac{Zn_3(OH)_2V_2O_7\cdot 2H_2O/NH_4V_4O_{10}}{nanobelts}$	0.5	337.0	10/4000	94%			
Mg_2VO_4/VO_2 heterostructures ⁵⁰	0.3	393.6	0.3/1000	83.6%			
δ -K _{0.49} V ₂ O ₅ nanobelts ⁵¹	0.2	361.0	5/2000	90.3%			
Our work	0.2	460.6	3/2500	90.7%			

 Table S1. Performance of comparison.

Sample	Mass loading	n/p	Areal current density	Areal capacity
	(mg cm ⁻²)	ratio	(mA cm ⁻²)	(mAh cm ⁻²)
KVO/VO ₂ -S2 cathode	2.33	19.5	7.0	0.5
	4.13	11.8	12.4	0.8
	6.40	10.6	19.2	0.9
	7.50	23.7	22.5	0.4
	8.32	22.4	25.0	0.4
	9.51	22.5	28.5	0.4

 Table S2. Performance of comparison of batteries with different n/p ratios.