Boosted oxygen vacancy in ZnO-Co₃O₄ composite by copper doping

for Bisphenol A abatement by persulfate

Lei Bai ^{ab*}, Hui Yan ^{b#}, Jiao Wang ^{c#}, Qihang Wu ^a, Guiling Wang ^{ab}, Yi Huang ^c, Bentian Zhang ^{ab*}

^a College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui, 233030, China

^b Anhui Province Quartzs and Purification and Photovoltaic Glass Engineering Research Center,

Chuzhou, 233100, China

° College of Food Engineering, Anhui Science and Technology University, Fengyang, Anhui,

233031, China

Email: baileiwj2014@163.com; zhangbt@ahstu.edu.cn

SFig.1 XRD patterns of the different precursors.

STable 1 ICP-AES data of element content in the copper dopped samples.

Co (wt.%)	Cu (wt.%)	Zn (wt.%)

Cu-Co ₃ O ₄ /NC	57.3	12.2	/
Cu-ZnO-Co ₃ O ₄ /NC	24.5	4.7	32.1

 $\boldsymbol{SFig. 2}\ N_2$ adsorption desorption isotherms of the samples.

SFig. 3 TEM image of ZnO-Co₃O₄ derived from ZIF-8-ZIF67.

SFig. 4 XPS spectra of N1s of the Cu-ZnO-Co₃O₄ and Cu-Co₃O₄.

SFig. 5 Zeta potential of Cu-ZnO-Co₃O₄ as a function of pH in water.

SFig. 6 BPA degradation under different conditions. [0.1 g·L⁻¹ catalyst, 20 mg·L⁻¹ BPA, 0.1 g·L⁻¹ PDS]

As shown in SFig.6, the PDS could not result in the degradation of BPA under the present reaction. Besides, the very slight degradation of BPA was achieved in the ZnO, CuO and Co_3O_4 in presence of PDS. Furthermore, it was suggested that after KOH treatment, a slight loss of the BPA degradation efficiency of Cu-ZnO-Co₃O₄ as indicated by the apparent degradation rate of 0.66 min⁻¹ (R²= 0.97) was observed possibly because the ZnO nanoparticles could be leached due to the reaction of $ZnO + 2KOH + H_2O = K_2[Zn(OH)_4]$ and Cu doped Co₃O₄ could be almost remained. However, after treating with H₂SO₄, both ZnO and Co₃O₄ nanoparticles in the composite could be almost removed and it was reasonable that a significant loss of the activity as suggested by the apparent degradation rate of 0.06 min⁻¹ (R²= 0.67) was observed. Thus, in the composite, the Cu doped Co₃O₄ nanoparticles and slight carbon species in the composite could be responsible for the activation of PDS.

Treatment condition: 5 mg of ZnO, CuO and Co_3O_4 were employed as catalyst, respectively. 5 mg of Cu-ZnO-Co₃O₄ were washed by 2 mL 0.5 M H₂SO₄ and 0.5 M KOH under sonication for 5 min to remove metal oxides and ZnO in the composite, respectively. After washed by distilled water for twice, the remained solids were used for BPA degradation with PDS.

STable 2 Comparison of BPA degradation activities over different catalysts

Catalysts	Condition	Performances	TOC (%)	Refs.
N-doped carbon	([BPA] = 20 mg/L, [PDS]	0.126 min ⁻¹	65.9 in 20	1

nanoparticles	=3.25 mM, [Catalyst] =		min	
	0.12 g/L, and initial			
	solution pH=7.0)			
CuO decorated on	$[BPA] = 5 \text{ mg } L^{-1}, [PDS] =$	0.1 min ⁻¹	82 in 150	2
hexagonal	$0.5 \text{ g } \text{L}^{-1}$, [CuBN-4] = 2.0 g		min	
boron nitride	L^{-1} , and pH = 4–5.			
mesoporous silica	[BPA] = 50 mg/L,	0.14 min ⁻¹	80 in 45	3
spheres-doping CuO	[catalyst] =1.5 g/L, [PDS] =		min	
(CuO/MSS)	100 mM, temperature = 25			
	°C, pH = 7			
Zn-OMS-2	BPA (20 mg L ⁻¹), Zn-	85% removal in 26 min	53 in 55	4
	OMS-2, $(0.5 \text{ g } \text{L}^{-1})$, PDS		min	
	$(0.5 \text{ g } \text{L}^{-1})$			
RC/CNTs/Fe ₃ O ₄	[Catalyst] ₀ = 0.2 g/L,	0.157 min^{-1}	27.41 in	5
	[PDS] ₀ =0.05 mM,		60 min	
	pH ₀ =6.07, [BPA] ₀ =5 ppm,			
	T=30°C			
ZnCo ₂ O ₄ /NC	[Catalyst] ₀ = 0.2 g/L,	0.42 min ⁻¹	68 in 12	6
	[PDS] ₀ =0.4 g L ⁻¹ , pH=7.6,		min	
	[BPA] ₀ =20 ppm, T=30°C			
Cu-ZnO-Co ₃ O ₄	[Catalyst] ₀ = 0.1 g/L,	0.84 min ⁻¹	52 in 6 min	This
	[PDS] ₀ =0.1 g L ⁻¹ , pH=7.6,			work
	[BPA] ₀ =20 ppm, T=25°C			

References:

1. Yin, H.Y.; Yao, F. B.; Pi, Z. J.; Zhong, Y. He, L.; Hou, K. J.; Fu, J.; Chen, S. J.; Tao, Z.; Wang, D. B.; Li, X. M.; Yang, Q. Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: Structure-function relationship and reaction mechanism. *J. Colloid Interf. Sci.* **2021**, *586*, 551.

2. Sun, Z. J.; Zhu, Y. H.; Deng, Y. Liu, F. D.; Ruan, W. Q.; Xie, L. J.; Beadham, I. Nature of surface-active centers in activation of peroxydisulfate by CuO for degradation of BPA with non-radical pathway. Colloids and Surf. A: Physicochemi. Eng. Aspect. **2022**, *643*, 128731

3. Sun, L.; Zhang, Z. Y.; Wan, F. L.; Bai, M. J; Deng, X. Y.; Wang, L. Y. Activation of persulfate by mesoporous silica spheres-doping CuO for bisphenol A removal. *Environ. Res.* **2022**, *205*, 112529

4. Li, J. M.; Hao, Z. X.; Jin, J.; Fang, C.; Yang, Z. H.; Meng, X.; Liu, X. Facile synthesis of Zn-OMS-2 nanorods for enhanced degradation of bisphenol A *via* PDS activation. *Inorga. Chem. Commun.* **2023**, *153*, 110791

5. Dong, Y. D.; Zhang, L. Q.; Zhou, P.; Liu, Y.; Lin, H.; Zhong, G. J.; Yao, G.; Li, Z. M.; Lai, B. Natural cellulose supported carbon nanotubes and Fe₃O₄ NPs as the efficient peroxydisulfate activator for the removal of bisphenol A: An enhanced non-radical oxidation process. *J. Hazard. Mater.* **2022**, *423*, 127054.

6. Wang, J.; Huang, X.Q; Bai, L. ZnCo₂O₄/NC Hollow Polyhedra for Bisphenol A Disposal and the Oxygen Evolution Reaction. *ACS Appl. Nano Mater.* **2024**, *7*, 10, 11900–11909.

Scheme 1 Possible degradation paths of BPA with Cu-ZnO-Co₃O₄ and PDS.

The possible degradation pathways of BPA were proposed as present in Scheme 1. It was suggested that a composite degradation mechanism (radical and non-radical pathway) may occur during the BPA oxidation. It was found that the dehydrogenation (path A) and hydroxylation (path B) reactions were occurred for BPA to form monohydroxylated BPA (m/z = 243) via hydroxylation, dehydroxylated bisphenol A (m/z = 259) and BPA 4,5-quinone (m/z = 241), respectively, which similarly could transform into 4-[2-(3,4-dihydroxyphenyl) propan-2-yl]-quinone (m/z = 257) through sequential electron transfer reaction. In addition, the fragments such as 4-isopropenylphenol (m/z = 133) and 4-hydroxyacetophenone (m/z = 135) as well as hydroquinone (m/z = 133), 4-isopropylphenol (m/z = 135) and 2-phenylpropan-2-ol (m/z = 135) demonstrated that BPA could undergo β -scission reaction (path C) and the direct C–C cleavage, which confirmed the existence of ¹O₂ generated by the catalyst and PDS. Finally, with the assistance of the active species, such as SO₄⁻⁻, HO·, O₂⁻⁻ and ¹O₂, the generated small organic molecules such as organic acids, acetone and phenol were further mineralized into harmless CO₂ and H₂O.

SFig. 7 (A) BPA degradation in the presence of different catalysts (20 ppm BPA, 0.1 g/L catalyst, 0.1 g/L PDS) and (B) in the presence of Cu-ZnO-Co₃O₄ under different condition (20 ppm BPA, 0.1 g/L catalyst, 0.1 g/L PDS or PMS).