Flutamide degradation driven by sulfonic acids: An unforeseen salts and salt polymorphs of degraded flutamide impurity

Jupally Prashanth ^{ac}, Krishna Prasad Pisini ^{bc}, Anuja Venkata Sai Durga Surampudi ^{a,c}, Sunil Kumar Nechipadappu ^{ac}, Debasish Swain ^{bc*}, Sridhar Balasubramanian ^{ac*}

^aCentre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-

Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad-500007, Telangana, India.

^bDepartment of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad-500007, Telangana, India.

^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002,India.

Figure S1.¹H NMR spectra of Flutamide.

Figure S2.¹H NMR spectra of Flu.D.

Figure S3.¹H NMR spectra of Flu.D-MSA (1:1).

Figure S4.¹H NMR spectra of Flu.D-ESA (2:2).

Figure S5.¹H NMR spectra of Flu.D-BSA (2:2).

Figure S6.¹H NMR spectra of Flu.D-PTSA (2:2).

Figure S7. Linearity curve of flutamide (in water) using UV-Visible spectroscopy for dissolution studies.

Figure S8. Linearity curve of flutamide (in pH 1.2) using UV-Visible spectroscopy for dissolution studies.

Figure S9. Linearity curve of Flu.D (in water) using UV-Visible spectroscopy for dissolution studies.

Figure S10.Linearity curve of Flu.D (in pH 1.2) using UV-Visible spectroscopy for dissolution studies.

Figure S11. PXRD overlay of flutamide with the impurity (Flu.D) showing distinct peaks.

Figure S12. Comparison of simulated (Flu.D-MSA (1:1) Calc) and experimental (Flu.D-MSA (1:1)Exp) PXRD patterns, demonstrating phase purity of the salts.

Figure S13. PXRD overlay of Flu.D-ESA (2:2) simulated pattern (Flu.D-ESA (2:2) Calc) with phase pure experimental pattern (Flu.D-ESA (2:2) Exp).

Figure S14. PXRD overlay of Flu.D-BSA (2:2) simulated pattern (Flu.D-BSA (2:2) Calc) with phase pure experimental pattern (Flu.D-BSA (2:2) Exp).

Figure S15. Overlay of calculated and experimental PXRD patterns of Flu.D-PTSA (2:2) composition, indicating the phase purity.

Figure S16. ESI-QTOF MS spectra of Flu.D.

Figure S17. Part of crystal packing of Flu-BSA 6:6 showing one dimensional chain sets and tetramer motifs formed between A and B molecules which aggregate into 2D sheets. H atoms that are not involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are shown as dashed lines. The green color represents Flu.D A molecule, BSA A (blue), Flu.D B (red), BSA B(yellow).

Figure S18. Part of crystal packing of Flu.D-BSA 6:6 showing infinite 1D chain and tetrameric sets between C and D molecules which in turn aids to form 2D sheets. H atoms that are not

involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are shown as dashed lines. The green color indicates Flu.D molecule C, BSA C (blue), Flu.D D (yellow), BSA D molecule (red).

Figure S19. Part of crystal structure of Flu.D-BSA 6:6 which show 1D chain formed between F molecules of Flu.D and BSA along with tetrameric units generated between E and F molecules of Flu.D and BSA. H atoms that are not involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are shown as dashed lines. The green color represents Flu.D E molecule, BSA E (blue), Flu.D F (yellow), and BSA F (red).

Flu.D-BSA (2:2)

177°

Flu.D-PTSA (2:2)

175°

Flu.D-ESA (2:2)

120°

Figure S20. HSM studies demonstrate phase transformation in the salts, visually apparent as

186°

186°

142°

224°

218°

144°

100°

96°

90°

30°

30°

30°

crystal darkening.

Figure S21. PXRD overlay comparing Flu.D, Flu.D-MSA (1:1) before and after DSC (Flu.D-MSA (1:1) After DSC) which showcases the phase transformation. * indicates the unknown phase.

Figure S22. PXRD overlay of Flu.D-BSA (1:1) and Flu.D-BSA (2:2) which was used for DSC analysis with the obtained form after phase transformation (Flu.D-BSA (2:2) After DSC) experiment. * indicates the unknown phase.

Figure S23. PXRD overlay of Flu.D-PTSA (2:2) which was used for DSC analysis with the obtained form after phase transformation (Flu.D-PTSA (2:2) After DSC) experiment. * indicates the unknown phase.

Figure S24. TGA data of newly obtained salts.

Figure S25. Solubility data of flutamide, Flu.D and its salts performed in water media.

Figure S26. Solubility data of flutamide, Flu.D and its salts performed in pH 1.2 buffer media.

Figure S27. PXRD overlay of flutamide as such with residues recovered after solubility study (24hr) in water (Flutamide-Water) and pH 1.2 (Flutamide-pH 1.2) media.

Figure S28. PXRD overlay of Flu.D parent (Flu.D as such) with residues recovered from water (Flu.D-Water) and pH 1.2 (Flu.D-pH 1.2) after 24hrs.

Figure S29. PXRD overlay of Flu.D parent (Flu.D as such) with residues recovered after equilibrium solubility study (24hr) in water (Flu.D-MSA (1:1)-Water) and pH 1.2 (Flu.D-MSA (1:1)-pH 1.2).

Figure S30. PXRD overlay of Flu.D with samples recovered after 24hrs solubility study in water (Flu.D-ESA (2:2)-Water) and pH 1.2 (Flu.D-ESA (2:2)-pH 1.2).

Figure S31. PXRD overlay of Flu.D with residues recovered after solubility study (24hr) in water (Flu.D-BSA (2:2)-Water) and pH 1.2 (Flu.D-BSA (2:2)-pH1.2).

Figure S32. PXRD overlay of Flu.D, Flu.D-PTSA (2:2) with residues recovered after 24hr solubility study in water (Flu.D-PTSA (2:2)-Water) and pH 1.2 (Flu.D-PTSA (2:2)-pH1.2)).

Table S1. Crystallographic data and structure refinement parameters of the Flu.D salts.								
Compound	Flu.D-	Flu.D-	Flu.D-	Flu.D-	Flu.D-	Flu.D-	Flu.D-	Flu.D-PTSA-
	MSA	MSA	ESA	BSA	BSA(2:	BSA(6:	PTSA	$H_2O(1:2:3)$
	(1 1)	(2:2)	(2:2)	(1:1)	2)	6)	(2:2)	
	(1:1)							
Chemical	C ₇ H ₆ F ₃	$C_7H_6F_3N_2$	C ₇ H ₆ F ₃	$C_7H_6F_3N_2O_2^+$				
formula	$N_2O_2^+ \cdot C$	$O_2^+ \cdot CH_3$	$N_2O_2^+$ ·	$N_2O_2^+$ ·	$N_2O_2^+\cdot$	$N_2O_2^+$ ·	$N_2O_2^+$ ·	$\cdot 2(C_7H_7O_3S^-)$
	H ₃ O ₃ S ⁻	O_3S^-	C ₂ H ₅ O	$C_6H_5O_3$	$C_6H_5O_3$	$C_6H_5O_3$	C ₇ H ₇ O ₃).2(H ₂ O)·H ₃
			₃ S-	S-	S-	S-	S-	O^+
CCDC number	2386899	2386905	23869	238690	238690	238690	238690	2386903
			04	0	2	6	1	
M _r	302.23	302.23	316.26	364.30	364.30	364.30	378.32	604.57
Crystal system,	Monocli	Monoclin	Monoc	Monocli	Orthorh	Triclini	Orthorh	Monoclinic,
space group	nic,	ic, <i>Cc</i>	linic,	nic, <i>P</i> 2 ₁	ombic,	c, <i>P</i> 1	ombic,	<i>P</i> 2 ₁
	C2/c		$P2_{1}/c$		$Pca2_1$		$Pca2_1$	
Temperature (K)	100 (2)	I	1	1	I	1	1	I
<i>a</i> , <i>b</i> , <i>c</i> (Å)	21.4337	10.6002	12.913	7.4154	27.3846	7.4616	29.2994	9.8176 (6),
	(18),	(7),	2 (14),	(4),	(4),	(17),	(2),	7.4895 (4),
	10.5337	10.6466	10.673	7.5301	7.4463	21.345	7.4757	17.8098 (10)
	(9),	(7),	7 (11),	(4),	(8),	(4),	(5),	
	12.9683	20.3303	18.342	13.6961	14.8172	27.575	14.7336	
	(12)	(19)	(2)	(7)	(17)	(6)	(10)	
α, β, γ (°)	125.723	90.123	92.616	100.749		94.444		94.428 (3)
	(4)	(4)	(5)	(2)		(5),		
						93.278		
						(6),		
						94.635		
						(6)		

$V(Å^3)$	2377.0	2294.4	2525.4	751.35	3021.4	4355.3	3227.2	1305.63 (13)
	(4)	(3)	(5)	(7)	(5)	(15)	(3)	
Ζ	8	8	8	2	8	12	8	2
Radiation type	Μο Κα	Μο <i>Κ</i> α	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα
μ (mm ⁻¹)	0.33	0.34	0.32	0.28	0.28	0.29	0.26	0.29
Crystal size	0.31 ×	0.31 ×	0.31 ×	0.31 ×	0.25 ×	0.30 ×	0.31 ×	0.31 × 0.25 ×
(mm)	0.29 ×	0.25 ×	0.29 ×	0.29 ×	0.21 ×	0.26 ×	0.29 ×	0.20
	0.21	0.20	0.21	0.26	0.19	0.23	0.27	
Data collection								
Diffractometer	Bruker D	8 QUEST PH	IOTON-1	00				
Absorption	Multi-sca	n SADABS 2	016/2: Kr	ause, L., F	Ierbst-Irme	r, R., Sheld	lrick G.M.	& Stalke D., J.
correction	Appl. Cry	rst. 48 (2015)) 3-10					
T_{\min}, T_{\max}	0.609,	0.689,	0.631,	0.664,	0.587,	0.679,	0.668,	0.513, 0.746
	0.745	0.746	0.746	0.746	0.746	0.746	0.746	
No. of	10245,	57350,	37253,	12793,	44903,	162486,	27143,	34218, 6462,
measured,	2418,	6971,	6341,	4509,	7806,	26455,	8872,	4546
independent and	1817	6919	3851	4347	6784	16622	7791	
observed [I >								
2σ(<i>I</i>)]								
reflections								
R _{int}	0.038	0.040	0.071	0.026	0.036	0.069	0.028	0.108
$(\sin \theta / \lambda)_{max}$	0.626	0.717	0.670	0.716	0.715	0.716	0.714	0.668
(Å ⁻¹)								
Refinement	<u> </u>	1	1	<u> </u>				
$R[F^2>2\sigma(F^2)],$	0.036,	0.031,	0.044,	0.028,	0.036,	0.044,	0.033,	0.056, 0.115,
$wR(F^2), S$.087, 1.03	0.081,	0.122,	0.070,	0.081,	0.117,	0.073, 1.02	1.01

		1.16	1.01	1.06	1.06	1.02		
No. of reflections	2418	6971	6341	4509	7806	26455	8872	6462
No. of parameters	185	370	387	229	457	1369	477	387
No. of restraints		3		1	1		1	10
H-atom treatment	H atoms t	reated by a n	nixture of	independ	ent and con	strained ret	finement	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e	0.28,	0.44,	0.52,	0.33,	0.55,	0.74,	0.27,	0.61, -0.52
A ⁻³)	-0.36	-0.31	-0.50	-0.24	-0.36	-0.55	-0.28	
Absolute		Refined		Flack x	Flack x		Flack x	Flack x
structure		as an		determ	determi		determi	determined
		inversion		ined	ned		ned	using 1488
		twin.		using	using		using	quotients
				1933	2368		3166	[(I+)-(I-
				quotie	quotient		quotient)]/[(I+)+(I-)]
				nts	s [(I+)-		s [(I+)-	(Parsons,
				[(I+)-	(I-		(I-	Flack and
				(I-)]/[(I+)+)]/[(I+)+	Wagner, Acta
)]/[(I+)	(I-)]		(I-)]	Cryst. B69
				+(I-)]	(Parsons		(Parsons	(2013) 249-
				(Parso	, Flack		, Flack	259).
				ns,	and		and	
				Flack	Wagner,		Wagner,	
				and	Acta		Acta	
				Wagne	Cryst.		Cryst.	
				r, Acta	B69		B69	
				Cryst.	(2013)		(2013)	
				B69	249-		249-	
				(2013)	259).		259).	
				249-				

		259).			
Absolute	0.07 (7)	0.009	0.007	0.03 (2)	0.06 (5)
structure		(19)	(18)		
parameter					

Table S2. Hydrogen bond geometries of Flu.D salts							
<i>D</i> —H··· <i>A</i>	<i>D</i> —Н (Å)	$\operatorname{H}^{\dots}A(\operatorname{\AA})$	$D^{\dots A}(\text{\AA})$	D—H···A (°)			
Flu.D-MSA (1:1)	I I						
N2—H2 <i>NB</i> ····O5	0.89 (3)	1.91 (3)	2.739 (3)	154 (2)			
N2—H2 NC ···O3 ⁱ	0.96 (3)	1.79 (3)	2.734 (2)	168 (2)			
N2—H2 <i>NA</i> ····O4 ⁱⁱ	0.91 (3)	1.90 (3)	2.792 (3)	166 (2)			
Symmetry codes: (i) –,	x+1/2, -y+3	/2, -z+1; (ii)) <i>x</i> , – <i>y</i> +1, <i>z</i> –1	/2			
Flu.D-MSA (2:2)							
N2 <i>B</i> —H2 <i>ND</i> ⋯O3 <i>B</i>	0.90 (4)	1.88 (4)	2.777 (3)	175 (4)			
N2 <i>A</i> —H2 <i>NB</i> ⋯O5 <i>A</i>	0.85 (4)	2.10 (4)	2.902 (3)	157 (4)			
N2 <i>A</i> —H2 <i>NC</i> ⋯O5 <i>B</i>	0.90 (2)	1.89 (2)	2.770 (3)	169 (6)			
$N2A$ — $H2NA$ ···O $3A^{i}$	0.81 (5)	2.02 (5)	2.829 (3)	172 (5)			
$N2B$ — $H2NF$ ····O5 B^{i}	0.82 (4)	2.14 (4)	2.911 (3)	158 (4)			
N2B—H2NE····O5 A^{ii}	0.90 (5)	1.89 (5)	2.775 (3)	167 (4)			
Symmetry codes: (i) $x-1/2$, $y-1/2$, z ; (ii) x , $y-1$, z							
Flu.D-ESA (2:2)							
$N2A - H2NA \cdots O3B$	0.98 (3)	1.72 (3)	2.704 (3)	179 (3)			
N2 <i>A</i> —H2 <i>NB</i> …O5 <i>A</i>	0.93 (3)	1.85 (3)	2.714 (3)	153 (2)			

N2 <i>B</i> —H2 <i>NE</i> ⋯O5 <i>B</i>	0.86 (3)	1.93 (3)	2.741 (3)	157 (2)			
N2 <i>B</i> —H2 <i>ND</i> ⋯O4 <i>A</i>	0.92 (3)	1.78 (3)	2.704 (3)	175 (3)			
N2 A —H2 NC ····O4 B^{i}	0.91 (3)	1.91 (3)	2.790 (3)	163 (2)			
N2B—H2NF····O3 A^{ii}	0.89 (3)	1.95 (3)	2.816 (3)	165 (3)			
Symmetry codes: (i) –	x, y+1/2, -z-	+3/2; (ii) - <i>x</i> -	+1, <i>y</i> -1/2, - <i>z</i> -	+3/2.			
Flu.D-BSA (1:1)							
N2—H2 <i>NB</i> ····O5	1.00 (3)	1.74 (3)	2.738 (2)	174 (3)			
N2—H2 NA ···O3 ⁱ	0.90 (3)	1.88 (3)	2.778 (2)	172 (3)			
N2—H2 <i>NC</i> ···O3 ⁱⁱ	0.91 (3)	2.16 (3)	2.865 (2)	134 (2)			
N2—H2 <i>NC</i> ···O4 ⁱⁱⁱ	0.91 (3)	2.18 (3)	2.870 (2)	132 (2)			
Symmetry codes: (i) –	x+1, y-1/2, -1/2	-z; (ii) $x-1,$	<i>y</i> , <i>z</i> ; (iii) – <i>x</i> +	1, y+1/2, -z.			
Flu.D-BSA (2:2)							
N2 <i>A</i> —H2 <i>NC</i> ···O3 <i>A</i>	0.88 (4)	2.30 (3)	2.897 (3)	124 (3)			
N2 <i>A</i> —H2 <i>NA</i> ····O3 <i>B</i>	0.89 (3)	1.85 (3)	2.734 (3)	173 (3)			
N2 <i>B</i> —H2 <i>NE</i> ⋯O5 <i>B</i>	0.88 (4)	1.88 (4)	2.724 (3)	161 (4)			
N2 <i>B</i> —H2 <i>NF</i> ····O4 <i>A</i>	0.96 (3)	1.86 (3)	2.799 (3)	164 (3)			
N2 A —H2 NC ····O5 B^{i}	0.88 (4)	2.07 (4)	2.877 (3)	150 (3)			
N2 <i>A</i> —H2 <i>NB</i> ····O5 <i>A</i> ⁱⁱ	0.94 (4)	1.84 (4)	2.757 (3)	166 (3)			
N2B—	0.90 (3)	2.03 (3)	2.863 (3)	155 (3)			
H2ND····O5A ^m							
Symmetry codes: (i) $x, y+1, z$; (ii) $-x+3/2, y, z+1/2$; (iii) $x, y-1, z$.							
Flu.D-BSA (6:6)							
N2 <i>A</i> —H2 <i>NA</i> ⋯O4 <i>B</i>	0.89 (2)	1.88 (2)	2.751 (2)	168 (2)			
N2 <i>A</i> —H2 <i>NB</i> ⋯O5 <i>A</i>	0.92 (2)	2.07 (2)	2.895 (2)	148.7 (19)			

N2 <i>B</i> —H2 <i>NE</i> ⋯O3 <i>B</i>	0.90 (3)	1.89 (3)	2.778 (2)	170 (2)				
N2 <i>C</i> —H2 <i>NG</i> ···O3 <i>C</i>	0.93 (2)	1.85 (2)	2.770 (2)	171.2 (19)				
N2 <i>C</i> —H2 <i>NH</i> ···O4 <i>A</i>	0.88 (2)	1.99 (2)	2.845 (2)	164 (2)				
N2 <i>C</i> —H2 <i>NI</i> ···O5 <i>D</i>	0.86 (2)	2.30 (2)	2.826 (2)	120.0 (18)				
N2 <i>D</i> —H2 <i>NK</i> ⋯O4 <i>C</i>	0.93 (2)	1.82 (2)	2.746 (2)	171.4 (19)				
N2 <i>D</i> —H2 <i>NL</i> ⋯O3 <i>D</i>	0.89 (3)	1.96 (3)	2.846 (2)	171 (2)				
N2 <i>E</i> —H2 <i>NM</i> ···O3 <i>F</i>	0.89 (3)	1.89 (3)	2.754 (2)	163 (2)				
N2 <i>E</i> —H2 <i>NO</i> ···O4 <i>E</i>	0.92 (2)	2.58 (2)	3.161 (2)	122.1 (17)				
N2 <i>E</i> —H2 <i>NO</i> ···O5 <i>E</i>	0.92 (2)	1.88 (2)	2.745 (2)	156.5 (19)				
N2 <i>F</i> —H2 <i>NP</i> ⋯O4 <i>E</i>	0.92 (2)	1.85 (2)	2.753 (2)	169 (2)				
N2 <i>F</i> —H2 <i>NQ</i> ⋯O5 <i>F</i>	0.90 (2)	2.06 (2)	2.874 (2)	149.0 (19)				
N2A—H2NC····O4 A^{i}	0.93 (2)	1.93 (2)	2.849 (2)	167.6 (19)				
N2B—H2ND····O3 D^{i}	0.91 (2)	1.97 (3)	2.839 (2)	160 (2)				
N2B—H2NF····O3 A^{i}	0.87 (2)	2.27 (2)	2.815 (2)	121.0 (19)				
N2B—H2NF····O4B ⁱ	0.87 (2)	2.31 (2)	2.990 (2)	135 (2)				
N2D—H2 NJ ···O4 D^{i}	0.86 (3)	2.16 (3)	2.937 (2)	149 (2)				
N2C—H2NI····O4C ⁱⁱ	0.86 (2)	2.34 (2)	3.006 (2)	135.1 (18)				
N2 <i>E</i> —	0.88 (3)	2.09 (2)	2.858 (2)	146 (2)				
H2 NN ····O4 F^{iii}								
Symmetry codes: (i) $x+1$, y , z ; (ii) $x-1$, y , z ; (iii) $-x+3$, $-y+3$, $-z+2$; (iv)								
$\begin{bmatrix} x+1, y+1, z \\ \vdots \\$								
Flu.D-P1SA (2:2)								
N2 A —H2 NB ····O5 A	0.88 (3)	1.86(3)	2.736 (2)	169 (3)				
N2 <i>B</i> —H2 <i>ND</i> ···O4 <i>A</i>	1.00 (3)	1.76 (3)	2.740 (3)	167 (3)				

N2B—H2NE····O5B	0.88 (3)	1.90 (3)	2.765 (3)	164 (3)			
N2A—H2NA····O3B ⁱ	0.94 (3)	1.89 (3)	2.803 (3)	164 (2)			
N2B—H2NF····O4B ⁱ	0.88 (3)	2.31 (3)	2.940 (3)	128 (2)			
N2A—H2NC····O5B ⁱⁱ	0.88 (3)	2.05 (3)	2.889 (3)	161 (2)			
N2B—H2NF····O5 A^{iii}	0.88 (3)	2.11 (3)	2.892 (3)	148 (2)			
Symmetry codes: $-x+3$	/2, <i>y</i> , <i>z</i> +1/2	; (ii) - <i>x</i> +3/2	, <i>y</i> -1, <i>z</i> +1/2;	(iii) $x, y+1, z$			
Flu.D-PTSA-H ₂ O (1:2	2:3)						
N2—H2 NA ····O5 A^{i}	0.86 (6)	2.10 (6)	2.904 (6)	155 (5)			
N2—H2 NB ····O3 B^{i}	0.97 (7)	1.80 (7)	2.745 (6)	163 (6)			
N2—H2 <i>NC</i> ····O3 <i>A</i>	0.84 (7)	2.07 (7)	2.797 (6)	145 (6)			
01 <i>W</i> —H1 <i>W</i> ····O3 <i>A</i>	0.89 (3)	1.85 (3)	2.740 (5)	175 (6)			
O1 <i>₩</i> —H2 <i>W</i> ···O3 <i>B</i>	0.85 (3)	1.97 (3)	2.814 (5)	171 (6)			
O2 <i>W</i> —H3 <i>W</i> ⋯O5 <i>B</i>	0.90 (2)	1.81 (3)	2.700 (5)	173 (4)			
$O2W - H4W \cdots O1W^{iii}$	0.88 (2)	1.73 (3)	2.602 (5)	168 (5)			
$O3W - H5W \cdots O4B^{iv}$	0.93 (3)	1.77 (3)	2.689 (5)	173 (5)			
$O3W - H6W \cdots O4A^{v}$	0.92 (3)	1.74 (3)	2.633 (5)	165 (5)			
O3 <i>W</i> —H7 <i>W</i> ⋯O2 <i>W</i>	0.89 (2)	1.54 (2)	2.431 (5)	174 (5)			
Symmetry codes: (i) $x, y+1, z$, (ii) $x, y-1, z$, (iii) $-x, y-1/2, -z+1$, (iv) $-x+1$,							
y-1/2, -z+1.							

Table.S3 Details of experiments conducted for flutamide using various						
coformers.						
API	Coformer	Experiment	Result			

		~1	
	Adenine	Slow	
		evaporation	
	Cytosine		
	e y tosme		
	Thrania		
	Inymme		
	~ 1 · · · 1		
	Sorbic acid		
		Slurry	
	Orotic acid	~~~~~	
Flutamide (20mg)	Uracil		Physical mixture
			5
	2-Bromo		
	benzoic acid		
	4 Chlore		
	4-Chioro		
	benzoic acid		
	Adipic acid		
	Ethenzamide		
	L-argenine		
	2	Slow	
	Pamoie acid	evaporation	
	751 1 11'		
	Theophylline		
	Saccharin		
	Caffeine		
	Maleic acid		

	-	
acid		
Nicotinic acid		
Iso nicotinic		
acid		
Succinic acid		
Benzoic acid	Slow	
ev	vaporation	
Flutamide (20mg)		Physical Mixture
Paracetamol		
Phenacitin		
Imidazole		
Taurine		
Camphor		
sulfonic acid		
L prolino	Slurry	
2,2'-		
Bipyridine		
4-Amino		
benzoic acid		
Imidazole		
Flutamide(20mg)		Physical Mixture
DL-tartaric		-
acid		

Table S4. Degradation profile of flutamide. Rt indicates retention time							
Standard	Pt Time (min)	Drug Perc	entage (%)				
Stallualu	Kt Thile (min)	Flutamide	Flu.D				
Flutamide standard	5.5	100	0				
Acid	4.9	0	10.05				
Base	4.9	0	2.4				
Neutral	5.5	97.13	2.86				
3%H ₂ O ₂	5.5	100	0				
Photolytic	5.5	100	0				
Thermal	5.5	100	0				

Table S5. DSC observation of the Flu.D salts						
Compound	Initial endotherm		Final melting endotherm			
	$T_{Onset}(^{\circ}C)$	$T_{Peak}(^{\circ}C)$	$T_{Onset}(^{\circ}C)$	T _{Peak} (°C)		
Flutamide	-	-	111.29	113.76		
Flu.D	-	-	126.66	128.63		
Flu.D-MSA (1:1)	123	126.21	174.2	175.63		
Flu.D-BSA (2:2)	177.24	183.65	222.16	223.43		
Flu.D-PTSA (2:2)	174.8	178.27	215.19	216.16		
Flu.D-ESA (2:2)	-	-	142.66	143.96		

Table S6. Cumulative drug release profiles at specified intervals of time in water media.							
Time Interval	% Cumulative drug release of						
(minutes)	Flutamide	Flu.D	Flu.D-	Flu.D-	Flu.D-	Flu.D-PTSA	
			MSA (1:1)	ESA (2:2)	BSA (2:2)	(2:2)	
0	0	0	0	0	0	0	
1	2	0.31	3.7	2.3	7.5	11	
5	3.2	3.1	18.8	10.8	22.5	32.3	

10	4.1	7.2	30.5	20.3	35.9	50.7
20	5.4	14	45.9	34.1	50.8	71.1
40	9.1	25.7	58.5	49.9	68.2	87.1
80	14.1	37.3	69.4	70.2	81.3	93.9
120	23.2	45.7	76.5	81.5	88.4	96.2

Table S7. Cumulative drug release profiles at specified intervals of time in pH 1.2 media.						
Time Interval	% Cumulative drug release of					
(minutes)	Flutamide	Flu.D	Flu.D-	Flu.D-ESA	Flu.D-BSA	Flu.D-
			MSA (1:1)	(2:2)	(2:2)	PTSA (2:2)
0	0	0	0	0	0	0
1	3.5	0.43	6.3	1.2	6.3	10.7
5	5.1	0.49	30.5	16.3	25.9	29.5
10	5.8	4.6	44.3	28.9	41.9	47.9
20	7.6	11	56.9	46.4	60.1	67.8
40	10.4	20.1	69.6	66.1	77.3	86
80	15.4	30.9	75.5	81.8	87.2	95
120	25.6	38.7	82.9	87.2	92.6	97.2