Electronic Supporting Information

Self-assembly properties of zinc(II) complexes with azo ligands grafted with the dodecyl chains: towards supramolecular materials driven by coordination and hydrophobic effect

Kristina Gak Simić, ^a Ivana Đorđević, ^{*b} Aleksandra Mašulović, ^a Lidija Radovanović, ^a Olivier Jeannin, ^c Franck Camerel ^c and Nemanja Trišović ^d

^a Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia.
 ^b University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Njegoševa 12, 11001 Belgrade, Serbia. E-mail: ivana.djordjevic@ihtm.bg.ac.rs
 ^c Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, Université de Rennes, Rennes, France.
 ^d University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia.

Compound	1	2				
Formula	C ₄₄ H ₆₄ N ₁₀ O ₈ Zn	C ₅₈ H ₈₄ N ₆ O ₁₄ Zn ₃				
Formula weight, g mol⁻¹	926.44	1285.48				
Crystal size, mm ³	0.26 × 0.25 × 0.10	$0.12 \times 0.09 \times 0.05$				
Crystal system	Monoclinic	Triclinic				
Space group	C2/c	ρĪĪ				
<i>a,</i> Å	15.459(2)	9.8122(12)				
<i>b,</i> Å	10.6509(13)	10.5321(13)				
<i>c,</i> Å	30.001(4)	14.9799(17)				
α, °	-	87.605(4)				
<i>в</i> , °	103.017(6)	87.231(4)				
γ, °	-	86.746(4)				
<i>V</i> , Å ³	4812.8(11)	1542.6(3)				
Ζ	4	1				
F(000)	1968	676				
μ , mm ⁻¹	0.57	1.223				
$ ho_{ m c}$, g cm ⁻³	1.279	1.384				
<i>Т,</i> К	295(2)	150(2)				
ϑ range, º	2.35–27.18	2.33–27.02				
Index ranges	–20→20	–12→12				
h k l	–13→13	–13→13				
п, к, т	-38→38	–18→19				
Reflections collected/unique	30275/5492	23386/7060				
Data/restraints/parameters	4483/0/285	5577/0/371				
<i>R</i> indices $[l > 2\sigma(l)]$	$R = 0.062, R_{\rm w} = 0.1695^*$	$R = 0.0343, R_w = 0.864^{**}$				
R indices (all data)	$R = 0.0751, R_w = 0.1788$	$R = 0.0506, R_w = 0.096$				
Goodness-of-fit	1.088	0.948				
R _{int}	0.0646	0.0488				
Δho_{max} , Δho_{min} , e Å ⁻³	0.7, -0.467	0.4, -0.44				
[*] $w = 1 / [\sigma^2(F_o^2) + (0.0856 \cdot P)^2 + 5.3972 \cdot P]$ where $P = (F_o^2 + 2 \cdot F_c^2) / 3$.						

Table S1 Crystal and structure refinement data for 1 and 2.

^{**} $w = 1 / [\sigma^2(F_0^2) + (0.0600 \cdot P)^2]$ where $P = (F_0^2 + 2 \cdot F_c^2) / 3$.

Complex 1							
Bond	•	Angle					
Zn(1)–O(2), O(2_a)	2.0327(3)	O(2)–Zn(1)–N(1_a),	00 42(4)				
Zn(1)–N(1), N(1_a)	2.0646(3)	N(1)-Zn(1)-O(2_a)	90.12(1)				
Zn(1)–N(4), N(4_	2.4923(3)	O(2)–Zn(1)–N(4_a),					
a)			152.70(1)				
Angle		N(4)–Zn(1)–O(2_a)					
O(2)-Zn(1)-N(1),		N(1)-Zn(1)-N(4),					
O(2_a)–Zn(1)–N(1_a)	105.15(1)	N(1_a)–Zn(1)–N(4_a)	68.58(1)				
O(2)–Zn(1)–N(4),	00.27(1)	N(1)–Zn(1)–N(4_a),	00.70(1)				
O(2_a)–Zn(1)–N(4_a)	88.27(1)	N(4)–Zn(1)–N(1_a)	88.76(1)				
O(2)–Zn(1)–O(2_a)	114.54(1)	N(1)–Zn(1)–N(1_a)	151.80(1)				
		N(4)–Zn(1)–N(4_a)	74.89(1)				
	Comp	lex 2					
Bond		Angle					
Zn(1)–O(1)	2.0023(17)	O(4)-Zn(1)-N(1)	147.79(6)				
Zn(1)–O(3)	2.4600(17)	O(4)-Zn(1)-N(3)	93.23(6)				
Zn(1)–O(4)	2.0211(15)	O(5)–Zn(1)–N(1)	102.46(7)				
Zn(1)–O(5)	1.9805(16)	O(5)–Zn(1)–N(3)	88.49(6)				
Zn(1)–N(1)	2.0813(18)	N(1)-Zn(1)-N(3)	71.90(7)				
Zn(1)–N(3)	2.3486(18)	O(2)–Zn(2)–O(4),	01 19(6)				
Zn(2)–O(2), O(2_a)	2.1201(15)	O(2_a)–Zn(2)–O(4_a)	91.10(0)				
Zn(2)–O(4), O(4_a)	2.0936(14)	O(2)–Zn(2)–O(6),	01 55(6)				
Zn(2)–O(6), O(6_a)	2.0846(15)	O(2_a)–Zn(2)–O(6_a)	91.55(0)				
Angle	_	O(2)–Zn(2)–O(2_a),					
O(1)-Zn(1)-O(3)	95.03(6)	O(4)–Zn(2)–O(4_a),	180.00				
O(1)–Zn(1)–O(4)	97.39(6)	O(6)–Zn(2)–O(6_a)					
O(1)–Zn(1)–O(5)	101.24(7)	O(2)–Zn(2)–O(4_a),	00 07(G)				
O(1)–Zn(1)–N(1)	92.31(7)	O(4)–Zn(2)–O(2_a)	88.82(0)				
O(1)–Zn(1)–N(3)	163.05(6)	O(2)–Zn(2)–O(6_a),	99 AE(6)				
O(3)–Zn(1)–O(4)	57.31(5)	O(6)–Zn(2)–O(2_a)	88.45(0)				
O(3)–Zn(1)–O(5)	158.08(6)	O(4)–Zn(2)–O(6),	99 0 <i>4(C</i>)				
O(3)–Zn(1)–N(1)	91.37(6)	O(4_a)–Zn(2)–O(6_a)	68.94(0)				
O(3)–Zn(1)–N(3)	79.64(6)	O(4)–Zn(2)–O(6_a),	01.06(6)				
O(4)–Zn(1)–O(5)	105.61(6)	O(6)–Zn(2)–O(4_a)	91.00(0)				

Table S2 Selected bond lengths (Å) and angles (°) for complexes ${\bf 1}$ and ${\bf 2}$

Fig. S1 Evolution of the bite angle with the Zn–N distances (left) and evolution of the N=N distance with the bite angle (right) in Zn azpm and Zn azpy complexes from the CCDC structures.

Fig. S2 Evolution of the N=N distance with the Zn–Nazo and Zn–Npy distances in Zn azpm and Zn azpy complexes from the CCDC structures.

	Level of theory	Zn(1)–O(2)	Zn(1)-N(1)	Zn(1)–N(4)
	Bond	2.0327ª	2.0646ª	2.4923ª
1	PBE1PBE / 6-31G	2.0139	2.0991	2.4487
2	PBE1PBE / 6-311G	2.0453*	2.1140*	2.2778*
3	PBE1PBE / def2TZVP	2.0085	2.1455	2.5808
4	B3LYP / 6-31G	2.0205	2.1187	2.4992
5	B3LYP / 6-311G	2.0555*	2.1265*	2.3292*
6	B3LYP / lanl2dz	2.0701*	2.1717*	2.3889*
7	B3LYP /			
	6-31G(d,p) for C, O, N, H	2.1366*	2.2508*	2.7967*
0				
0	6-31+G(d n) for O			
	6-31G(d) for C. N	2.0240	2.1387*	2.5254*
	6-31G for H			
	6-311+G(d,p) for Zn			
9	B3LYP /			
	6-31+G(d,p) for O, N			
	6-31G(d) for C	2.0199	2.1544	2.6093
	6-31G for H			
	6-311+G(d,p) for Zn			
10	B3PW91 / 6-311G(d,p)	2.0016	2.1283	2.4203
11	BVP86 / 6-31G	2.0254*	2.1058*	2.4579*
12	TPSSTPSS / 6-31G	2.0172	2.0990	2.4419*
13	WB97XD / 6-31G	2.0080*	2.1052*	2.4517*
14	mPW1PW91 / 6-31G	2.0102	2.0976	2.4530
15	LC-wPBE / 6-31G	1.9955	2.0824	2.4407
16	LC-wPBE / 6-311G(d,p)	1.9853	2.1139	2.3907
17	M06-2X / 6-31G	2.0606*	2.1295*	2.4383*
18	CAM-B3LYP / 6-31G	2.0033*	2.0980*	2.4545*
19	CAM-B3LYP / 6-311G	2.0352	2.1115	2.2890*
20	CAM-B3LYP / 6-311G(d,p)	1.9902	2.1246	2.4144

Table S3 Selected bond lengths (Å) of optimized complex 1 geometries at different levels of theorycompared to crystal structure data as referent values^a

* average value

Angle			MPW1PW91	B3LYP	BVP86	TPSSTPSS	CAM-B3LYP
	Level of th	eory	6-31G	6-31G	6-31G	6-31G	6-311G(d,p)
N1–Zn1–N4,	cis	68.58ª	69.12	68.70	69.47	69.52	68.56
N1_a–Zn1–N4_a							
N4–Zn1–N4_a	cis	74.89 ^a	77.79	81.23	81.70	77.07	76.96
O2–Zn1–N4,	cis	88 27ª	88 20	87 71	87 30	87 28	85 92
O2_a–Zn1–N4_a	CIS	00.27	00.20	07.71	07.50	07.20	03.52
N1–Zn1–N4_a,	cis	88 76ª	89 30	89.20	88 86	88 74	92 70
N4–Zn1–N1_a	015	00.70	05.50	05.20	00.00	00.74	52.70
O2–Zn1–N1_a,	cis	QO 12ª	81 00	85 15	8/1 20	8/ 10	86.97
N1–Zn1–O2_a	015	50.12	04.55	05.15	04.20	04.10	00.57
O2–Zn1–N1_a,	cis	105 15ª	110 02	111.06	111 75	110 47	104 85
N1–Zn1–O2_a	015	105.15	110.02	111.00	111.75	110.47	104.05
O2–Zn1–O2_a	cis	114.54ª	114.80	112.85	113.29	117.44	119.71
N1–Zn1–N1_a	trans	151.80ª	152.60	151.23	151.63	152.50	156.63
O2–Zn1–N4_a,	trans	152 203	150 /2	151 50	151 57	1/0 21	1/0 02
N4–Zn1–O2_a	uuns	192.70	130.45	101.09	101.02	149.51	149.02

Table S4 Selected angles (°) of optimized complex **1** geometries at different levels of theory compared to crystal structure data as referent values^a

Table S5 Selected bond lengths (Å) of optimized complex **2** geometries at different levels of theory compared to crystal structure data as referent values^a

Bond		B3LYP	B3LYP	B3LYP	B3LYP	CAM-B3LYP
	Level of theory	6-31G	6-311G	6-311G(d,p)	6-311G, lanl2dz	6-311G(d,p)
Zn(1)O(1)	2.0023ª	2.048	2.037	2.032	2.059	2.012
Zn(1)–O(3)	2.4600ª	2.748	2.578	2.330	2.401	2.411
Zn(1)–O(4)	2.0211ª	2.012	2.039	2.076	2.129	2.020
Zn(1)–O(5)	1.9805ª	1.988	1.996	1.999	2.037	1.979
Zn(1)–N(1)	2.0813ª	2.067	2.063	2.103	2.141	2.075
Zn(1)–N(3)	2.3486 ^a	2.333	2.319	2.346	2.383	2.315
Zn(2)–O(2), O(2	2_a) 2.1201ª	2.127	2.113	2.104	2.152	2.098
Zn(2)–O(4), O(4	4_a) 2.0936ª	2.011	2.039	2.077	2.129	2.020
Zn(2)–O(6), O(6_a) 2.0846ª	2.113	2.111	2.104	2.136	2.083

Atoms	Free molecule/ion	Complex 1*
NACs		
L ¹ : N(1) _{pm}	-0.4826	-0.6421
L ¹ : N(4) _{azo}	-0.1445	-0.2181
O(2) _{NO3}	-0.5852	-0.7625
Zn(1)	/	+1.6907
NECs**		
L ¹ : N(1) _{pm}	[core]2s ^{1.37} 2p ^{4.10} 3p ^{0.01} 3d ^{0.01}	[core]2s ^{1.35} 2p ^{4.27} 3p ^{0.02}
L ¹ : N(4) _{azo}	[core]2s ^{1.40} 2p ^{3.72} 3s ^{0.01} 3p ^{0.01} 3d ^{0.01}	[core]2s ^{1.37} 2p ^{3.81} 3s ^{0.01} 3p ^{0.02} 3d ^{0.01}
O(2) _{NO3}	[core]2s ^{1.76} 2p ^{4.81}	[core]2s ^{1.77} 2p ^{4.98} 3p ^{0.01}
Zn(1)	/	[core]4s ^{0.33} 3d ^{9.96} 4p ^{0.01} 5s ^{0.01}
O(2) _{NO3} Zn(1) NECs** L ¹ : N(1) _{pm} L ¹ : N(4) _{azo} O(2) _{NO3} Zn(1)	-0.5852 / [core]2s ^{1.37} 2p ^{4.10} 3p ^{0.01} 3d ^{0.01} [core]2s ^{1.40} 2p ^{3.72} 3s ^{0.01} 3p ^{0.01} 3d ^{0.01} [core]2s ^{1.76} 2p ^{4.81} /	-0.7625 +1.6907 [core]2s ^{1.35} 2p ^{4.27} 3p ^{0.02} [core]2s ^{1.37} 2p ^{3.81} 3s ^{0.01} 3p ^{0.02} 3d ^{0.} [core]2s ^{1.77} 2p ^{4.98} 3p ^{0.01} [core]4s ^{0.33} 3d ^{9.96} 4p ^{0.01} 5s ^{0.01}

Table S6 The calculated natural atomic charges (NACs) and natural electron configurations (NECs) of selected atoms in free molecules/ions and complex **1**

* Half of the data were presented due to symmetry consideration

** [core] represent inner core electrons

Table S7 The calculated natural atomic charges (NACs) and natural electron configurations (NECs) of selected atoms in free molecules/ions and complex **2**

Atoms	Free molecule/ion	Complex 2 *
NACs		
L ² : N(1) _{py}	-0.4506	-0.6140
L ² : N(3) _{azo}	-0.1461	-0.2156
O(3) _{ac}	-0.7979	-0.7135
O(5) _{ac}	-0.8084	-0.8696
O(4) _{ac}	-0.8084	-0.9814
Zn(1)	/	+1.6826
O(6) _{ac}		-0.8298
O(2) _{ac}		-0.8160
Zn(2)	/	+1.7313
NECs**		
L ² : N(1) _{py}	[core]2s ^{1.35} 2p ^{4.08} 3p ^{0.01} 3d ^{0.01}	[core]2s ^{1.34} 2p ^{4.25} 3p ^{0.02}
L ² : N(3) _{azo}	[core]2s ^{1.39} 2p ^{3.73} 3s ^{0.01} 3p ^{0.01} 3d ^{0.01}	[core]2s ^{1.36} 2p ^{3.81} 3s ^{0.01} 3p ^{0.02} 3d ^{0.01}
O(4) _{ac}	[core]2s ^{1.71} 2p ^{5.08}	[core]2s ^{1.70} 2p ^{5.16} 3p ^{0.01}
O(3) _{ac}	[core]2s ^{1.71} 2p ^{5.07}	[core]2s ^{1.70} 2p ^{5.00}
O(5) _{ac}	[core]2s ^{1.71} 2p ^{5.08}	[core]2s ^{1.7} 0 2p ^{5.16} 3p ^{0.01}
Zn(1)	/	[core]4s ^{0.33} 3d ^{9.97} 4p ^{0.01}
Zn(2)	/	[core]4s ^{0.28} 3d ^{9.98} 4p ^{0.01}

* Half of the data are presented due to symmetry consideration

** [core] represent inner core electrons

	Donor			Acceptor	_	
NBO(i)	Occ.	AO%	NBO(j)	Occ.	AO%	E ²
complex 1						
LP(2) O(2) _{NO3}	1.9075	s(24.00)p(75.98)	LP*(6)Zn	0.3293	s(99.85)p(0.01)d(0.13)	38.67
LP(1) O(2) _{NO3}	1.9665	s(54.29)p(45.69)	LP*(6)Zn	0.3293	s(99.85)p(0.01)d(0.13)	9.89
LP(1) N(1) _{pm}	1.8941	s(24.33)p(75.65)	LP*(6)Zn	0.3293	s(99.85)p(0.01)d(0.13)	30.14
LP(1) N(4) _{azo}	1.9277	s(33.21)p(66.76)	LP*(6)Zn	0.3293	s(99.85)p(0.01)d(0.13)	17.88
complex 2					Zn(1) center	
LP(1) N(1) _{py}	1.8891	s(23.69)p(76.29)	LP*(6)Zn	0.3330	s(99.90)p(0.07)d(0.03)	32.83
LP(1) N(3) _{azo}	1.9273	s(32.68)p(67.29)	LP*(6)Zn	0.3330	s(99.90)p(0.07)d(0.03)	21.22
LP(1) O(1) _{ac}	1.9516	s(48.54)p(51.43)	LP*(6)Zn	0.3330	s(99.90)p(0.07)d(0.03)	13.10
LP(2) O(4) _{ac}	1.8911	s(10.26)p(89.72)	LP*(6)Zn	0.3330	s(99.90)p(0.07)d(0.03)	30.61
LP(2) O(4) _{ac}	1.8955	s(16.33)p(83.65)	LP*(6)Zn	0.3330	s(99.90)p(0.07)d(0.03)	30.95
LP(1) O(4) _{ac}	1.9381	s(44.41)p(55.58)	LP*(6)Zn	0.3330	s(99.90)p(0.07)d(0.03)	4.63
LP(1) O(3) _{ac}	1.9684	s(56.03)p(43.95)	LP*(6)Zn	0. 3330	s(99.90)p(0.07)d(0.03)	4.68
LP(2) O(5) _{ac}	1.8871	s(12.37)p(87.61)	LP*(6)Zn	0. 3330	s(99.90)p(0.07)d(0.03)	34.10
LP(1) O(5) _{ac}	1.9540	s(46.32)p(53.66)	LP*(6)Zn	0. 3330	s(99.90)p(0.07)d(0.03)	12.51
					Zn(2) center	
LP(1) O(2) _{ac}	1.9493	s(53.05)p(46.93)	LP*(6)Zn	0.2827	s(99.99)d(0.01)	17.32
LP(2) O(2) _{ac}	1.8950	s(4.76)p(95.21)	LP*(6)Zn	0.2827	s(99.99)d(0.01)	16.17
LP(1) O(4) _{ac}	1.9381	s(44.41)p(55.58)	LP*(6)Zn	0.2827	s(99.99)d(0.01)	23.79
LP(1) O(6) _{ac}	1.9490	s(52.38)p(47.60)	LP*(6)Zn	0.2827	s(99.99)d(0.01)	17.50
LP(2) O(6) _{ac}	1.8963	s(5.17)p(94.81)	LP*(6)Zn	0.2827	s(99.99)d(0.01)	16.45

Table S8 Selected Donor NBO(i) and Acceptor NBO(j) Orbitals in Complexes, Orbital Occupancy (Occ.), Percent of Atomic Orbitals Contribute to NBOs (AO%) and the Second Order Perturbative Energies E^2 (kcal mol⁻¹) corresponding to donor-acceptor interactions in complexes

LP(1) and (2) denote the first and second lone electron pair orbital

LP*(6) denote the sixth-center orbital with an anti-bonding character.

Table S9 Topological parameters of electron density for free ligand L¹ and its complex **1**: electron density ($\rho(\mathbf{r})$), Laplacian distribution ($\nabla^2 \rho(\mathbf{r})$), potential energy density ($V(\mathbf{r})$), kinetic energy density ($G(\mathbf{r})$), and electronic energy density ($H(\mathbf{r})$) at the Bond Critical Points (3, -1). Parameters are all in the atomic unit (a.u) except $k(\mathbf{r}) = |V(\mathbf{r})| / G(\mathbf{r})$.

Bond	<i>ρ</i> (r)	$\nabla^2 \rho(\mathbf{r})$	<i>H</i> (r)	<i>V</i> (r)	G(r)	<i>k</i> (r)	
free ligand							
C(1) _{pm} -N(1) _{pm}	0.3536	-1.0811	-0.5044	-0.7384	0.2341	3.1547	
$N(1)_{pm} - C(2)_{pm}$	0.3472	-1.0032	-0.5059	-0.7609	0.2551	2.9833	
C(2) _{pm} -C(3) _{pm}	0.3173	-0.9158	-0.3325	-0.4361	0.1036	4.2101	
$C(3)_{pm}$ – $C(4)_{pm}$	0.3173	-0.9162	-0.3326	-0.4361	0.1035	4.2129	
$C(4)_{pm}$ – $N(2)_{pm}$	0.3479	-1.0044	-0.5077	-0.7643	0.2566	2.9786	
$N(2)_{pm}$ - $C(1)_{pm}$	0.3537	-1.0927	-0.5055	-0.7377	0.2323	3.1760	
C(1) _{pm} -N(3) _{azo}	0.3046	-0.9296	-0.3474	-0.4624	0.1150	4.0212	
N(3) _{azo} -N(4) _{azo}	0.4767	-1.2475	-0.6052	-0.8984	0.2933	3.0634	
$N(4)_{azo}$ - $C(5)_{ph}$	0.2991	-0.8885	-0.3708	-0.5195	0.1487	3.4936	
		con	nplex 1				
Zn(1)-N(1) _{pm}	0.0654	0.2469	-0.0134	-0.0885	0.0751	1.1781	
Zn(1)–N(4) _{azo}	0.0348	0.1170	-0.0049	-0.0391	0.0342	1.1435	
Zn(1)-O(2) _{NO3}	0.0779	0.4021	-0.0091	-0.1188	0.1097	1.0834	
$C(1)_{pm}$ - $N(1)_{pm}$	0.3488	-1.0233	-0.5032	-0.7507	0.2474	3.0339	
$N(1)_{pm} - C(2)_{pm}$	0.3375	-0.8770	-0.4963	-0.7733	0.2770	2.7915	
C(2) _{pm} -C(3) _{pm}	0.3190	-0.9307	-0.3360	-0.4394	0.1034	4.2505	
C(3) _{pm} -C(4) _{pm}	0.3186	-0.9247	-0.3350	-0.4389	0.1039	4.2255	
$C(4)_{pm}$ – $N(2)_{pm}$	0.3458	-1.0010	-0.5038	-0.7573	0.2535	2.9872	
$N(2)_{pm}$ - $C(1)_{pm}$	0.3612	-1.1293	-0.5217	-0.7611	0.2394	3.1794	
C(1) _{pm} -N(3) _{azo}	0.3023	-0.9026	-0.3405	-0.4553	0.1148	3.9652	
N(3) _{azo} -N(4) _{azo}	0.4736	-1.2308	-0.5969	-0.8861	0.2892	3.0640	
$N(4)_{azo}$ - $C(5)_{ph}$	0.2964	-0.8378	-0.3879	-0.5664	0.1785	3.1734	

Table S10 Topological parameters of electron density for free ligand L² and its complex **2**: electron density ($\rho(\mathbf{r})$), Laplacian distribution ($\nabla^2 \rho(\mathbf{r})$), potential energy density ($V(\mathbf{r})$), kinetic energy density ($G(\mathbf{r})$), and electronic energy density ($H(\mathbf{r})$) at the Bond Critical Points (3, -1). Parameters are all in the atomic unit (a.u) except $k(\mathbf{r}) = |V(\mathbf{r})| / G(\mathbf{r})$.

Bond	<i>ρ</i> (r)	$\nabla^2 \rho(\mathbf{r})$	H(r)	V(r)	<i>G</i> (r)	<i>k</i> (r)	
	free ligand						
C(1) _{py} -N(1) _{py}	0.3502	-1.0395	-0.5045	-0.7491	0.2446	3.0624	
N(1) _{py} -C(5) _{py}	0.3458	-0.9559	-0.5074	-0.7759	0.2685	2.8901	
$C(5)_{py} - C(4)_{py}$	0.3146	-0.8999	-0.3262	-0.4275	0.1012	4.2220	
C(4) _{py} -C(3) _{py}	0.3136	-0.8961	-0.3259	-0.4279	0.1019	4.1977	
C(3) _{py} -C(2) _{py}	0.3158	-0.9085	-0.3306	-0.4341	0.1035	4.1949	
C(2) _{py} -C(1) _{py}	0.3159	-0.9091	-0.3280	-0.4287	0.1007	4.2562	
$C(1)_{py}-N(2)_{azo}$	0.2983	-0.8915	-0.3432	-0.4635	0.1203	3.8522	
N(2) _{azo} -N(3) _{azo}	0.4765	-1.2491	-0.6039	-0.8956	0.2917	3.0707	
N(3) _{azo} –C(6) _{ph}	0.2995	-0.8911	-0.3689	-0.5149	0.1461	3.5251	
		con	nplex 2				
Zn(1) centre							
Zn(1)-N(1) _{py}	0.0725	0.2930	-0.0015	-0.1027	0.0880	1.1672	
Zn(1)–N(3) _{azo}	0.0436	0.1457	-0.0078	-0.0520	0.0442	1.1763	
Zn(1)–O(3) _{ac}	0.0304	0.1203	-0.0022	-0.0345	0.0323	1.0681	
Zn(1)-O(4) _{ac}	0.0740	0.3603	-0.0102	-0.1105	0.1003	1.1017	
Zn(1)–O(5) _{ac}	0.0785	0.4154	-0.0092	-0.1222	0.1130	1.0810	
Zn(1)-O(1) _{ac}	0.0727	0.3683	-0.0087	-0.1094	0.1007	1.0859	
Zn(2) centre							
Zn(2)–O(6) _{ac}	0.0592	0.2840	-0.0068	-0.0847	0.0779	1.0879	
Zn(2)–O(4) _{ac}	0.0597	0.2912	-0.0071	-0.0871	0.0799	1.0893	
Zn(2)–O(2) _{ac}	0.0571	0.2704	-0.0066	-0.0807	0.0742	1.0886	
Zn(2)–O(2) _{ac}	0.0570	0.2693	-0.0066	-0.0804	0.0739	1.0888	
Zn(2)–O(6) _{ac}	0.0590	0.2828	-0.0068	-0.0844	0.0775	1.0882	
Zn(2)-O(4) _{ac}	0.0598	0.2920	-0.0071	-0.0873	0.0801	1.0891	
L ²							
C(1) _{py} -N(1) _{py}	0.3440	-0.9760	-0.4988	-0.7535	0.2548	2.9577	
N(1) _{py} -C(5) _{py}	0.3359	-0.8367	-0.4943	-0.7795	0.2852	2.7336	
C(5) _{py} -C(4) _{py}	0.3166	-0.9148	-0.3305	-0.4323	0.1018	4.2460	
C(4) _{py} -C(3) _{py}	0.3143	-0.9015	-0.3273	-0.4291	0.1019	4.2124	
C(3) _{py} -C(2) _{py}	0.3158	-0.9101	-0.3303	-0.4331	0.1028	4.2136	
C(2) _{py} -C(1) _{py}	0.3192	-0.9314	-0.3359	-0.4390	0.1031	4.2588	
$C(1)_{py}-N(2)_{azo}$	0.3042	-0.9171	-0.3539	-0.4786	0.1247	3.8392	
N(2) _{azo} -N(3) _{azo}	0.4697	-1.2062	-0.5866	-0.8717	0.2851	3.0578	
$N(3)_{azo} - C(6)_{nh}$	0.2966	-0.8260	-0.3912	-0.5758	0.1847	3.1181	

Fig. S3 2D fingerprint plots according to the d_{norm} value for **1**.

Fig. S4 2D fingerprint plots according to the d_{norm} value for **2**.

15 BIVCITIII	incur mor	. BE 15 culculated		0D3D3/0 3110(0,	p) iever of theory	
Dimer	R <i>,</i> Å	Electrostatic	Repulsion	Dispersion	E_{Total}	ΔE
D1_1	9.39	-10.63	12.85	-29.60	-27.38	-26.37
D2_1	19.99	0.54	6.99	-23.33	-15.80	-14.77
D3_1	24.64	-3.52	4.75	-15.96	-14.73	-12.31
D4_1	10.65	-4.99	4.78	-7.01	-7.22	-8.64
D5_1	27.24	-0.39	1.87	-9.55	-8.07	-6.45
D6_1	19.44	-2.56	1.89	-5.02	-5.69	-5.37

Table S11 Energy decomposition analysis based on molecular forcefield (EDA-FF) for complex **1.** All energy is given in kcal mol⁻¹. ΔE is calculated at CAM-B3LYP-GD3BJ/6-311G(d,p) level of theory

Table S12 Energy decomposition analysis based on molecular forcefield (EDA-FF) for complex **2**. All energy is given in kcal mol⁻¹. ΔE is calculated at CAM-B3LYP-GD3BJ/6-311G(d,p) level of theory

- 0 -					· / · · · · · · /	
Dimer	R <i>,</i> Å	Electrostatic	Repulsion	Dispersion	E_{Total}	ΔE
D1_2	9.81	-9.86	27.57	-73.08	-55.37	-49.00
D2_2	13.98	-16.38	11.05	-17.47	-22.80	-20.61
D3_2	24.11	-2.70	7.83	-20.12	-14.99	-12.81
D4_2	10.53	1.77	6.31	-16.57	-8.48	-9.28
D5_2	20.39	0.01	6.42	-14.00	-7.58	-8.52
D6_2	26.50	-0.03	2.32	-8.81	-6.52	-6.00
	17.51	0.00	3.62	-9.83	-6.22	-5.98

Table S13 QTAIM analysis of non-covalent interaction in dimer D1_1 of complex 1

CPs	<i>ρ</i> (r)	$\nabla^2 ho(r)$	<i>H</i> (r)	<i>V</i> (r)	<i>G</i> (r)	k(r)	sign(λ_2) $ ho$ *	interaction	Ε
1	0.007100	0.021530	0.000481	-0.004421	0.004902	0.9019	-0.7099	04…H11 ⁱ	-1.39
2	0.012177	0.044326	0.001617	-0.007847	0.009464	0.8291	-1.2177	04… H4 ⁱ	-2.46
3	0.007466	0.021083	0.000770	-0.003731	0.004501	0.8289	-0.7466	N3 ⁱ ···H3	-1.17
4	0.010980	0.036439	0.001495	-0.006120	0.007615	0.8037	-0.0109	N2 ⁱ ···H2	-1.92
5	0.005038	0.015019	0.000779	-0.002196	0.002975	0.7380	-0.5038	Cg1…Cg2	-0.69
6	0.003522	0.010034	0.000390	-0.001728	0.002118	0.8157	-0.3522	H17A…H22B ⁱ	-0.54
7	0.006358	0.016104	0.000451	-0.003124	0.003575	0.8738	-0.6358	H15B…H22B ⁱ	-0.98
8	0.002937	0.008591	0.000377	-0.001393	0.001771	0.7870	-0.2937	H15B…H20B ⁱ	-0.44
9	0.004509	0.011393	0.000322	-0.002205	0.002526	0.8726	-0.4509	H13A…H20B ⁱ	-0.69
10	0.002333	0.007028	0.000359	-0.001039	0.001398	0.7434	-0.2333	H13A…H18B ⁱ	-0.33
11	0.003634	0.009616	0.000328	-0.001747	0.002075	0.8417	-0.3634	H11B…H18B ⁱ	-0.55
12	0.002076	0.006516	0.000000	-0.000907	0.001268	0.7151	-0.2076	H11B…H16A ⁱ	-0.28
13	0.002713	0.007290	0.000344	-0.001134	0.001478	0.7672	-0.2713	Cg1…H16A ⁱ	-0.36
14	0.004593	0.012114	0.000465	-0.002098	0.002563	0.8185	-0.4593	Cg1…H14B ⁱ	-0.66

CPs	<i>ρ</i> (r)	$\nabla^2 \rho(\mathbf{r})$	<i>H</i> (r)	<i>V</i> (r)	<i>G</i> (r)	k(r)	$sign(\lambda_2) ho^*$	interaction	Ε
1	0.006723	0.018535	0.000570	-0.003494	0.004064	0.8598	-0.6723	N2 ⁱⁱ ···H22C	-1.10
2	0.002005	0.007187	0.000360	-0.001077	0.001437	0.7496	-0.2005	N3 ⁱⁱ …H20A	-0.34
3	0.003122	0.008957	0.000410	-0.001420	0.001830	0.7762	-0.3122	<i>C</i> g1 ⁱⁱ …H20A	-0.45
4	0.003529	0.010210	0.000459	-0.001634	0.002093	0.7805	-0.3529	<i>C</i> g1 ⁱⁱ …H19A	-0.51
5	0.004397	0.011793	0.000456	-0.002037	0.002493	0.8172	-0.4397	<i>C</i> g1 ⁱⁱ …H18A	-0.64
6	0.002337	0.007929	0.000438	-0.001107	0.001545	0.7167	-0.2337	<i>C</i> g1 ⁱⁱ …H17A	-0.35
7	0.002891	0.009273	0.000413	-0.001492	0.001905	0.7830	-0.2891	H16B…H11B ⁱⁱ	-0.47
8	0.003443	0.010351	0.000404	-0.001779	0.002184	0.8149	-0.3443	H15B…H12A ⁱⁱ	-0.56
9	0.003298	0.010590	0.000448	-0.001752	0.002200	0.7965	-0.3298	H14A…H12A ⁱⁱ	-0.55
10	0.002780	0.008821	0.000395	-0.001415	0.001810	0.7818	-0.2780	H14…H13 ⁱⁱ	-0.44

Table S14 QTAIM analysis of non-covalent interaction in dimer D2_1 of complex 1

 Table S15 QTAIM analysis of non-covalent interaction in dimer D3_1 of complex 1

CPs	<i>ρ</i> (r)	$\nabla^2 ho(r)$	<i>H</i> (r)	<i>V</i> (r)	<i>G</i> (r)	k(r)	$sign(\lambda_2) ho^*$	interaction	Ε
1	0.005411	0.016618	0.000532	-0.003090	0.003622	0.8530	-0.5411	02 ⁱⁱⁱ …H22A	-0.97
2	0.005708	0.017309	0.000703	-0.002922	0.003625	0.8062	-0.5708	H21A···H9 ⁱⁱⁱ	-0.92
3	0.001012	0.003576	0.000256	-0.000382	0.000638	0.5982	-0.1012	H19B…H11B ⁱⁱⁱ	-0.12
4	0.001237	0.004212	0.000284	-0.000485	0.000769	0.6304	-0.1237	H17B…HA ⁱⁱⁱ	-0.15
5	0.001256	0.004272	0.000285	-0.000497	0.000783	0.6353	-0.1256	H15A…HA ⁱⁱⁱ	-0.16

*Values of $sign(\lambda_2)\rho$ are multiple by 10⁻²; Half of the data were presented due to symmetry consideration

Table S16 QTAIM analysis of non-covalent interaction in dimer D4_1 of complex 1

CPs	<i>ρ</i> (r)	$\nabla^2 \rho(\mathbf{r})$	<i>H</i> (r)	V(r)	G(r)	k(r)	sign(λ_2) ρ^*	interaction	Ε
1	0.011046	0.038090	0.001386	-0.006750	0.008136	0.8296	-1.1046	03 ^{iv} …H7	-2.12
	<u> </u>		1 1 2 1 1	16 6 11 1 1					

*Values of $sign(\lambda_2)\rho$ are multiple by 10⁻²; Half of the data were presented due to symmetry consideration

Table S17 QTAIM analysis of non-covalent interaction in dim	er D5	1 of com	plex 1
---	-------	----------	--------

CPs	<i>ρ</i> (r)	$ abla^2 ho(r)$	<i>H</i> (r)	<i>V</i> (r)	<i>G</i> (r)	k(r)	sign(λ_2) ρ^*	interaction	Ε
1	0.002380	0.009215	0.000509	-0.001286	0.001795	0.7165	-0.2380	01 ^v H22C	-0.41
2	0.002143	0.007340	0.000439	-0.000957	0.001396	0.6855	-0.2143	H22C…H12B ^v	-0.30
3	0.002337	0.007904	0.000460	-0.001056	0.001516	0.6967	-0.2337	H20B…H12 ^v	-0.33
4	0.001926	0.006502	0.000388	-0.000850	0.001238	0.6867	-0.1926	H20B…H14B ^v	-0.27
5	0.001792	0.006081	0.000371	-0.000778	0.001149	0.6768	-0.1792	H18B…H16A ^v	-0.24

Table S18 QTAIM analysis of non-covalent interaction in dimer D6_1 of complex 1

CPs	<i>ρ</i> (r)	$\nabla^2 \rho(\mathbf{r})$	<i>H</i> (r)	V(r)	G(r)	k(r)(r)	$sign(\lambda_2) ho^*$	interaction	Ε
1	0.006858	0.022006	0.000703	-0.004095	0.004798	0.8534	-0.6858	03 ^{vi} …H19A	-1.28
*Value	s of sign(λ_2)	are multiple	e by 10 ⁻² ; Ha	lf of the data	were presen	ted due to	symmetry o	onsideration	

 Table S19 QTAIM analysis of non-covalent interaction in dimer D1_2 of complex 2

CPs	<i>ρ</i> (r)	$\nabla^2 ho(r)$	<i>H</i> (r)	<i>V</i> (r)	<i>G</i> (r)	k(r	$sign(\lambda_2) ho^*$	interaction	Ε
1	0.002339	0.007204	0.000355	-0.001090	0.001446	0.7541	-0.2340	H23C…H17A ⁱ	-0.34
2	0.002231	0.007672	0.000396	-0.001127	0.001522	0.7402	-0.2231	H22C…H15A ⁱ	-0.35
3	0.002988	0.009242	0.000390	-0.001531	0.001921	0.7969	-0.2988	H22B…H16A ⁱ	-0.48
4	0.003632	0.010757	0.000402	-0.001885	0.002287	0.8241	-0.3632	H22B…H14A ⁱ	-0.59
5	0.002947	0.010411	0.000496	-0.001611	0.002107	0.7648	-0.2947	H22B…H15A ⁱ	-0.51
6	0.003353	0.010003	0.000391	-0.001719	0.002110	0.8147	-0.3353	H21B…H15A ⁱ	-0.54
7	0.003557	0.010825	0.000423	-0.001860	0.002283	0.8148	-0.3557	H21B…H13B ⁱ	-0.58
8	0.004431	0.012618	0.000419	-0.002317	0.002736	0.8470	-0.4431	H20A…H14A ⁱ	-0.73
9	0.003558	0.012963	0.000601	-0.002038	0.002639	0.7722	-0.3558	H20A…H13B ⁱ	-0.64
10	0.005033	0.014587	0.000489	-0.002670	0.003158	0.8453	-0.5033	H20A…H12A ⁱ	-0.84
11	0.004090	0.012232	0.000446	-0.002166	0.002612	0.8292	-0.4090	H19A…H13B ⁱ	-0.68
12	0.004950	0.013946	0.000431	-0.002626	0.003056	0.8591	-0.4950	H18B…H12A ⁱ	-0.82
13	0.003220	0.011947	0.000515	-0.001958	0.002472	0.7919	-0.3212	07 ⁱ H19A	-0.61
14	0.006117	0.017832	0.000458	-0.003542	0.004000	0.8856	-0.6117	05 ⁱ …H14B	-1.11
15	0.006143	0.019799	0.000635	-0.003680	0.004315	0.8529	-0.6143	O5 ⁱ ····H25B ⁱⁱ	-1.15
16	0.004006	0.010622	0.000403	-0.001850	0.002253	0.8212	-0.4006	<i>C</i> g2 ⁱ H18B	-0.58
17	0.004928	0.012660	0.000457	-0.002251	0.002708	0.8312	-0.4928	<i>C</i> g2 ⁱ H17B	-0.71
18	0.005399	0.014307	0.000497	-0.002583	0.003080	0.8386	-0.5399	<i>C</i> g2 ⁱ H16B	-0.81
19	0.004552	0.012346	0.000486	-0.002115	0.002601	0.8132	-0.4552	<i>C</i> g2 ⁱ H15B	-0.66
20	0.004075	0.009773	0.000391	-0.001661	0.002052	0.8093	-0.4075	Cg1 ⁱ Cg2 ⁱ	-0.52

Table S20 QTAIM analysis of non-covalent interaction in	n dimer D2_2 of co	nplex 2
---	--------------------	---------

CPs	ho(r)	$\nabla^2 ho(r)$	<i>H</i> (r)	<i>V</i> (r)	<i>G</i> (r)	k(r)	$sign(\lambda_2)\rho^*$	interaction	Ε
1	0.011341	0.043978	0.001769	-0.007456	0.009225	0.8082	-1.1341	03 ⁱⁱⁱ …H4	-2.34
2	0.007811	0.028860	0.001085	-0.005046	0.006130	0.8231	-0.7811	O3 ⁱⁱⁱ …H3	-1.58
3	0.002611	0.010593	0.000610	-0.001428	0.002038	0.7007	-0.2611	Cg1…Cg3 ⁱⁱⁱ	-0.45
4	0.005306	0.015158	0.000701	-0.002388	0.003089	0.7731	-0.5306	<i>C</i> g1… <i>C</i> g1	-0.75
5	0.005304	0.015150	0.000700	-0.002387	0.003087	0.7732	-0.5304	<i>C</i> g1… <i>C</i> g1	-0.75

CPs $\rho(r)$ $\nabla^2 \rho(r)$ $H(r)$ $V(r)$ $G(r)$ $k(r)$ $sign(\lambda_2)\rho^*$ interaction10.0049230.0163260.000566 -0.002950 0.0035160.8391 -0.4924 $O6^{iv} \cdots H23B$ -0.002950 20.0007390.0028860.000229 -0.000264 0.0004930.5355 -0.0740 $O3^v \cdots H23A$ -0.002950	
1 0.004923 0.016326 0.000566 -0.002950 0.003516 0.8391 -0.4924 O6 ^{iv} ···H23B -0 2 0.000739 0.002886 0.000229 -0.000264 0.000493 0.5355 -0.0740 O3 ^v ···H23A -0 2 0.005502 0.016555 -0.0740 O3 ^v ···H23A -0	Ε
2 0.000739 0.002886 0.000229 -0.000264 0.000493 0.5355 -0.0740 O3 ^v ···H23A -0	-0.93
	-0.08
3 0.005999 0.018606 0.000773 -0.003106 0.003879 0.8008 -0.5999 H23B···H29A·· -(. ^{iv} –0.97
4 0.005378 0.017729 0.000759 -0.002915 0.003674 0.7935 -0.5378 H23A…H25C ^v -(° −0.91
5 0.006301 0.018545 0.000660 -0.003317 0.003977 0.8341 -0.6301 H22A…H25C ^v -2	^v −1.04
6 0.002373 0.007741 0.000406 -0.001124 0.001529 0.7346 -0.2373 H22A…H10A ^{iv} -(. ^{iv} –0.35
7 0.003721 0.009804 0.000328 -0.001796 0.002124 0.8458 -0.3721 H22A…H12A ^{iv} -(. ^{iv} –0.56
8 0.003186 0.008571 0.000320 -0.001503 0.001823 0.8244 -0.3186 H20B…H14A ^{iv} -(^{iv} -0.47
9 0.002796 0.007793 0.000327 -0.001295 0.001621 0.7984 -0.2796 H18A…H16A ^{iv} -(. ^{iv} -0.41
10 0.001500 0.004924 0.000318 -0.000594 0.000913 0.6512 -0.1500 H16A···H16A ^{iv} -0	. ^{iv} –0.19

Table S21 QTAIM analysis of non-covalent interaction in dimer D3 2 of complex 2

Table S22 QTAIM analysis of non-covalent interaction in dimer D4_2 of complex 2

CPs	<i>ρ</i> (r)	$\nabla^2 ho(r)$	<i>H</i> (r)	<i>V</i> (r)	G(r)	k(r)	$sign(\lambda_2) ho^*$	interaction	Ε
1	0.005262	0.017401	0.000764	-0.002823	0.003586	0.7871	-0.5262	N2 ^{vii} ···H27A	-0.89
2	0.004922	0.015563	0.000727	-0.002438	0.003164	0.7704	-0.4922	Cg2 ^{vii} …H27C	-0.76
3	0.008249	0.025575	0.000782	-0.004829	0.005611	0.8606	-0.8249	O3 ^{vii} ···H27A	-1.52
dia									

*Values of $sign(\lambda_2)\rho$ are multiple by 10⁻²; Half of the data were presented due to symmetry consideration

Table S23 QTAIM ar	alvsis of non-covalent	interaction in di	mer D5 2 of comp	lex 2

CPs	<i>ρ</i> (r)	$ abla^2 ho(r)$	<i>H</i> (r)	<i>V</i> (r)	G(r)	k(r)	$sign(\lambda_2) ho^*$	interaction	Ε
1	0.001461	0.004922	0.000309	-0.000612	0.000922	0.6646	-0.1461	H13…H13B ^{vi}	-0.19
2	0.007652	0.021456	0.000777	-0.003809	0.004587	0.8305	-0.7652	H21A…H2 ^{vi}	-1.20
3	0.004526	0.013694	0.000543	-0.002338	0.002881	0.8117	-0.4526	H17A…H7 ^{vi}	-0.73
4	0.003685	0.012229	0.000567	-0.001923	0.002490	0.7723	-0.3685	H17A…H8 ^{vi}	-0.60
5	0.007906	0.021140	0.000722	-0.003840	0.004563	0.8417	-0.7906	H15A…H8 ^{vi}	-1.20
6	0.002288	0.007192	0.000369	-0.001059	0.001429	0.7415	-0.2288	H23A…H3 ^{vi}	-0.33

Table S24 QTAIM analysis of non-covalent interaction in dimer D6_2 of complex 2

CPs	<i>ρ</i> (r)	$ abla^2 ho(r)$	<i>H</i> (r)	V(r)	<i>G</i> (r)	k(r)	sign(λ₂)ρ *	interaction	Ε
1	0.005752	0.018175	0.000779	-0.00298 6	0.003765	0.7931	-0.5752	H29C…H19B ^{viii}	-0.94
2	0.004422	0.013302	0.000528	-0.00227 0	0.002798	0.8114	-0.4422	H29B···H20B ^{viii}	-0.71
3	0.004272	0.013477	0.000585	-0.00219 9	0.002784	0.7899	-0.4272	H29B…H18A ^{vii} i	-0.69
4	0.002267	0.007645	0.000400	-0.00111 1	0.001511	0.7353	-0.2267	H29A…H17 ^{viii}	-0.35

 Table S25 QTAIM analysis of non-covalent interaction in dimer D7_2 of complex 2

CPs	ho(r)	$\nabla^2 ho(r)$	<i>H</i> (r)	<i>V</i> (r)	G(r)	k(r)	sign(λ_2) ρ^*	interaction	Ε
1	0.006117	0.017273	0.000644	-0.003031	0.003675	0.8248	-0.6116	H23C···H8 ^{ix}	-0.95
2	0.001706	0.006695	0.000426	-0.000821	0.001248	0.6583	-0.1706	07 ^{ix} …H21B	-0.26
3	0.003132	0.009208	0.000401	-0.001500	0.001901	0.7889	-0.3132	H19A…H13A ^{ix}	-0.47
4	0.002752	0.008088	0.000370	-0.001283	0.001652	0.7762	-0.2752	H17B…H15B ^{ix}	-0.40