Electronic Supplementary Information

Blue and White-light emitting 2D Metal-organic frameworks of *cis*-5-Norbornene-endo-2,3-dicarboxylic acid

Ahmed Mohammed A. Alghamdi[†], Shakeeba Cholikadam[†], Mohammed Fettouhi^{† §}, Abdul Nasar Kalanthoden[†], Almaz S. Jalilov [‡]*, Abdul Malik P. Peedikakkal ^{† §} *

[†]Department of Chemistry, King Fahd University of Petroleum and Minerals, P.O. Box 1710, Dhahran 31261, Saudi Arabia

[§]Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

[‡]Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah,

Sharjah, P.O. Box 26666, United Arab Emirates.

Table of Contents	Page No.
X-ray Crystallography	2
Figure S1. An illustration of coordination environment in 1 along z axis.	2
Figure S2. Schematic representation of seven-coordinated geometry in 1.	3
Figure S3. An illustration of mapping of surface space-filling in a polyhedra of Pb(II) in 1 .	
Figure S3. An illustration of mapping of surface space-filling in a 2D layer in 1.	3
Figure S5. An illustration of coordination environment in 2 along y axis.	3
Table S1. Selected bond length (Å) and bond angles (°) in 1	4
<i>Table S2</i> . Selected bond length (Å) and bond angles($^{\circ}$) in 2	6
X-ray Powder Patterns	7
Figure S6. X-ray powder patterns of compounds 1.	7
Figure S7. X-ray powder patterns of compounds 2.	8
FT-IR Spectra	9
Figure S8. FT-IR Spectra of 1.	9
Figure S9. FT-IR Spectra of 2.	9
TGA Analysis	10
Figure S10. TGA analysis of 1.	10

Figure S11. TGA analysis of 2 .	11
Solid-state UV-vis spectra	12
Figure S12. Solid-state UV-vis spectra of compounds 1-2.	12

X-ray Crystallography

Figure S1. An illustration of coordination environment in along z axis.

Figure S2. Schematic representation of seven-coordinated geometry in **1** and its reduction to a simple, planar trigonal description using VBV model as described in Miguel A. H et al. *Acta Cryst.* 2006. **B62**, 1038–1042.

Figure S3. An illustration of mapping of surface space-filling in a polyhedra of Pb(II) in **1**. The surface space-filling clearly shows the hemi-directed coordination geometry.

Figure S4. An illustration of mapping of surface space-filling in a 2D layer in 1.

Figure S5. An illustration of coordination environment in **2** along *y* axis.

Table S1. Sele	cted bond le	ength (Å)) and bond	angles (°	°) in 1	1
----------------	--------------	-----------	------------	-----------	---------	---

Pb(1)-O(3)#1	2.405(8)
Pb(1)-O(2)	2.503(8)
Pb(1)-O(1)	2.551(11)
Pb(1)-O(4)#1	2.602(10)
Pb(1)-O(4)#2	2.619(10)
Pb(1)-C(4)#1	2.849(13)
Pb(1)-C(1)	2.860(14)
O(1)-C(1)	1.231(18)
O(2)-C(1)	1.29(2)
O(3)-C(4)	1.30(3)
O(4)-C(4)	1.247(16)
C(1)-C(2)	1.517(19)
C(2)-C(3)	1.557(18)
C(2)-C(8)	1.574(18)
C(3)-C(4)	1.504(18)
C(3)-C(5)	1.535(18)
C(5)-C(6)	1.50(2)
C(5)-C(9)	1.517(19)
C(6)-C(7)	1.30(2)
C(7)-C(8)	1.53(2)
C(8)-C(9)	1.536(19)
O(3)#1-Pb(1)-O(2)	89.6(3)
O(3)#1-Pb(1)-O(1)	102.4(5)
O(2)-Pb(1)-O(1)	51.8(4)
O(3)#1-Pb(1)-O(4)#1	52.0(6)
O(2)-Pb(1)-O(4)#1	75.9(4)
O(1)-Pb(1)-O(4)#1	123.4(3)
O(3)#1-Pb(1)-O(4)#2	70.2(6)
O(2)-Pb(1)-O(4)#2	110.2(4)

O(1)-Pb(1)-O(4)#2	68.2(3)
O(4)#1-Pb(1)-O(4)#2	122.0(4)
O(3)#1-Pb(1)-C(4)#1	26.9(6)
O(2)-Pb(1)-C(4)#1	86.8(4)
O(1)-Pb(1)-C(4)#1	120.0(4)
O(4)#1-Pb(1)-C(4)#1	26.0(3)
O(4)#2-Pb(1)-C(4)#1	96.2(3)
O(3)#1-Pb(1)-C(1)	99.9(4)
O(2)-Pb(1)-C(1)	26.7(4)
O(1)-Pb(1)-C(1)	25.5(4)
O(4)#1-Pb(1)-C(1)	101.7(4)
O(4)#2-Pb(1)-C(1)	90.5(4)
C(4)#1-Pb(1)-C(1)	107.2(4)
C(1)-O(1)-Pb(1)	91.4(9)
C(1)-O(2)-Pb(1)	92.3(9)
C(4)-O(3)-Pb(1)#3	96.0(10)
C(4)-O(4)-Pb(1)#3	88 1(8)
C(4)-O(4)-Pb(1)#4	150 6(9)
Pb(1)#3-O(4)-Pb(1)#4	1160(4)
O(1)-C(1)-O(2)	122 6(13)
O(1)-C(1)-C(2)	122.0(13) 120.2(13)
O(2)-C(1)-C(2)	116 9(12)
O(1)-C(1)-Pb(1)	63 1(8)
O(2)-C(1)-Pb(1)	61.0(7)
C(2)- $C(1)$ -Pb(1)	161 5(9)
C(1)-C(2)-C(3)	116.5(11)
C(1)-C(2)-C(8)	114.8(10)
C(3)-C(2)-C(8)	100.6(10)
C(4)-C(3)-C(5)	116.0(11)
C(4)-C(3)-C(2)	115.6(11)
C(5)-C(3)-C(2)	104.2(10)
O(4)-C(4)-O(3)	119.7(12)
O(4)-C(4)-C(3)	122.1(12)
O(3)-C(4)-C(3)	118.1(11)
O(4)-C(4)-Pb(1)#3	65.9(7)
O(3)-C(4)-Pb(1)#3	57.1(6)
C(3)-C(4)-Pb(1)#3	157.2(8)
C(6)-C(5)-C(9)	100.8(12)
C(6)-C(5)-C(3)	107.0(11)
C(9)-C(5)-C(3)	100.1(11)
C(7)-C(6)-C(5)	107.9(16)
C(6)-C(7)-C(8)	107.6(13)
C(7)-C(8)-C(9)	99.6(12)
C(7)-C(8)-C(2)	107.9(10)
C(9)-C(8)-C(2)	99.3(11)
C(5)-C(9)-C(8)	93.6(10)

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,-y+1/2,z-1/2 #2 x-1/2,-y+1/2,z #3 -x+3/2,-y+1/2,z+1/2 #4 x+1/2,-y+1/2,z

Zn(1)-O(2)	1.9394(19)
Zn(1)-O(4)#1	1.9610(18)
Zn(1)-O(3)#2	1.967(2)
Zn(1)-O(1)#2	1.980(2)
O(1)-C(1)	1.258(3)
O(2)-C(1)	1.266(3)
O(3)-C(9)	1.261(3)
O(4)-C(9)	1.254(3)
C(1)-C(2)	1.516(3)
C(2)-C(3)	1.563(3)
C(2)-C(6)	1.585(3)
C(9)-C(6)	1.520(3)
C(3)-C(7)	1.511(4)
C(3)-C(4)	1.533(4)
C(6)-C(5)	1.555(4)
C(8)-C(7)	1.331(4)
C(8)-C(5)	1.504(4)
C(5)-C(4)	1.533(4)
O(2)-Zn(1)-O(4)#1	122.92(8)
O(2)-Zn(1)-O(3)#2	112.41(9)
O(4)#1-Zn(1)-O(3)#2	105.92(9)
O(2)-Zn(1)-O(1)#2	110.02(8)
O(4)#1-Zn(1)-O(1)#2	108.96(9)
O(3)#2-Zn(1)-O(1)#2	92.26(9)
C(1)-O(1)-Zn(1)#3	126.02(17)
C(1)-O(2)-Zn(1)	111.17(17)
C(9)-O(3)-Zn(1)#3	125.84(18)
C(9)-O(4)-Zn(1)#1	113.13(17)
O(1)-C(1)-O(2)	120.4(2)
O(1)-C(1)-C(2)	121.5(2)
O(2)-C(1)-C(2)	117.9(2)
C(1)-C(2)-C(3)	113.8(2)
C(1)-C(2)-C(6)	120.39(19)
C(3)-C(2)-C(6)	101.93(18)
O(4)-C(9)-O(3)	120.5(2)
O(4)-C(9)-C(6)	117.8(2)
O(3)-C(9)-C(6)	121.5(2)
C(7) - C(3) - C(4)	100.6(2)
C(7)-C(3)-C(2)	106.7(2) 100.2(2)
C(4) - C(5) - C(2)	100.2(2)
C(9) - C(0) - C(3)	115.1(2) 120.4(2)
C(9)-C(0)-C(2)	120.4(2) 102.23(10)
C(3)-C(0)-C(2)	102.23(19) 107.8(3)
C(8) - C(7) - C(3)	107.3(3) 107.2(3)
C(8)-C(5)-C(4)	107.2(3) 100 5(2)
C(8) - C(5) - C(6)	106.3(2)
C(4)-C(5)-C(6)	100.0(2) 100 4(2)
C(5)-C(4)-C(3)	93.8(2)
	× /

Table S2. Selected bond length (Å) and bond angles (°) in 2

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1 #2 -x+1,y-1/2,-z+3/2 #3 -x+1,y+1/2,-z+3/2

X-ray Powder Pattern

Figure S6. X-ray powder patterns of compounds 1.

Figure S7. X-ray powder patterns of compounds **2**.

FT-IR Spectra

Figure S8. FT-IR Spectra of 1.

Figure S9. FT-IR Spectra of 2.

Figure S10. TGA Analysis of 1.

Figure S11. TGA Analysis of **2**.

Solid-state UV-vis spectra

Figure S12. Solid-state UV-vis spectra of compounds 1-2.