Exploring Novel Cocrystals of Milrinone: A Cardioprotective Drug Combined with Nutraceuticals and NSAID

Gowtham Kenguva,^a Smruti Rekha Rout,^a Tabrez R. Shaikh^b, Debjani Baidya^b, Nikita Shelke^b, Palash Sanphui,^{*c} Rambabu Dandela^{*a}

^aDepartment of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India. E-mail: <u>r.dandela@iocb.ictmumbai.edu.in</u>,

^b Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India

^c Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, India. E-mail: palashi@srmist.edu.in,

Contents	Page no.
Table S1: Crystallographic table of MR cocrystals	02
Table S2: Hydrogen bond geometry of molecular adducts of	03
MR.	
Figure S1: ORTEP view of MR cocrystals in 50% thermal	03-04
ellipsoids.	
Figure S2. PXRD of all synthesized molecular adducts	04
Figure S3. PXRD analysis after solubility experiments in both	05
pH 1.2 and pH 7.0.	
Figure S4: Linearity graphs for dissolution and solubility studies of MR and its cocrystals in both pH 1.2 and 7.0 medium.	05-06
Table S3, S4:Dissolution and PXRD data of MR and it cocrystals in both pH1.2 and pH 7.0	06-07
Figure S5: PXRD data of all molecular adducts after dissolution in both pH 1.2 and pH 7.0	08
Figure S6: Time-dependent PXRD plot of MR.SES at pH 7.0, illustrating structural stability over time	08
Table S5: Hirshfeld Surface Analysis of all molecular adducts.	09
Figure S7: Stability studies of all MR cocrystals	10

Parameters	MR.NIF	MR.RES	MR.SES
Formula	$C_{13} H_9 F_3 N_2 O_2, C_{12} H_9 N_3 O$	$C_{14} H_{12} O_3, C_{12} H_9 N_3 O, H_2 O$	$C_{12} H_9 N_3 O, C_7 H_6 O_3$
$M_{ m r}$	493.44	457.47	349.34
crystal shape	Block	Block	Block
crystal colour	Colourless	Colourless	Colourless
crystal system	triclinic	monoclinic	monoclinic
space group	$P\overline{1}$	$P2_{1}/c$	$P2_{1}/c$
<i>Т</i> , К	298	298	293
λ (Mo-K _{α})/Å	0.71073	0.71073	0.71073
a/Å	10.7282(9)	12.1866(13)	8.0120(3)
b/Å	10.7734(9)	14.7266(16)	16.7621(7)
c/Å	11.9845(11)	26.278(3)	12.6282(5)
$\alpha/^0$	85.550(2)	90	90
β^{0}	65.237(2)	99.145(3)	91.0102(3)
$\gamma/^{0}$	64.849(2)	90	90
V/Å ³	1130.01(17)	4656.0(8)	1695.68(12)
Ζ	2	8	4
D_c / g cm ⁻³	1.45	1.305	1.368
μ , mm ⁻¹	0.115	0.092	0.098
2θ range [⁰]	2.28-24.94	2.41 - 24.998	2.81-25.242
limiting indices $F(000)$	$\begin{array}{l} 12 \leq h \leq -12 \\ 12 \leq k \leq -12 \\ 14 \leq l \leq -14 \\ 508 \end{array}$	$\begin{array}{c} 14 \leq h \leq -14 \\ 17 \leq k \leq -17 \\ 31 \leq l \leq -31 \\ 1920 \end{array}$	$10 \le h \le -10$ $22 \le k \le -22$ $16 \le 1 \le -15$ 728.0
total reflections	26687	68074	35954
unique reflections	3957	8213	4192
reflection at $I > 2\sigma(I)$	2954	4311	2403
No. of parameters	331	632	271
$R_1, I > 2\sigma(I)$	0.0502	0.0634	0.0514
$wR_2 I > 2\sigma(I)$	0.1397	0.1847	0.1809
GoF on F^2	1.071	0.976	1.076
CCDC No.	2385549	2385548	2385550

 Table S1. Crystallographic lattice parameters of MR cocrystals

	D-HA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
MR.NIF	O2-H2N4	0.82	1.79	2.606(2)	171.4
	N2-H2AO3	0.86	1.96	2.665(2)	138.6
	N1-H101	0.893 (17)	1.868 (17)	2.760(2)	177(2)
MR.RES	N4-H4O4	0.82(3)	2.06(3)	2.867(3)	167(3)
	N1-H101	0.87(4)	2.01(4)	2.866(3)	169(3)
	O2-H2O9	0.819(19)	1.82(2)	2.637(3)	177(5)
	O7-H7N6	0.82	1.96	2.734(3)	156.5
	O8-H8N3	0.82	1.88	2.666(3)	159.3
	O3-H3O10	0.82	1.86	2.667(3)	166.6
	O5-H5AO1	0.82	1.94	2.717(3)	158.4
	O6-H6O2	0.82	1.93	2.749(3)	177.9
	O9-H9AO8	0.85	1.94	2.783(3)	174.6
	О9-Н9ВО3	0.85	2.19	2.795(3)	128.0
	O10-H10AO6	0.85	2.06	2.861(3)	157.4
	O10-H10BO4	0.85	2.00	2.811(3)	160.0
MR.SES	O1-H1N3	0.886(18)	1.83(2)	2.705(3)	167(3)
	N2-H204	0.87(3)	2.02(3)	2.864(2)	164(2)

Table S2: Hydrogen bond geometry $(\text{\AA}/^{\circ})$ of molecular adducts of MR

(a)

Figure S1: ORTEP view of (a) MR.NIF, (b) MR.SES, (c) MR.RES Co-crystals. Herein, the thermal ellipsoids are drawn with a 50% probability.

Figure S2. PXRD of all synthesized MR.SES, MR.NIF and MR.RES cocrystals confirmed their utmost purity.

Figure S3. PXRD Analysis of all molecular adducts after solubility in both pH 1.2 and 7.0 media

pH 7.0	ppm	area
1	10	12.3532
2	20	25.1038
3	30	37.969
4	40	51.2606

26.307

4

40

Figure S4:	Linearity	graphs for	solubility	studies	of MR	and its	cocrystals	in both	pH 1	1.2 and
7.0 medium	1.									

Time (minutes)	MR	MR_NIF	MR_RES	MR_SES
		Concentrat	tion in ppm	
15	119.7	32.9	44.4	23.2
30	131.3	45.9	52.2	64.1
45	156.7	46.3	51.2	86.1
60	177.4	45.5	52.7	90.3
90	178.5	44.8	52.5	158.6
120	181.7	45.5	51.9	176.4
150	184.7	44.6	50.5	181.9
180	189.8	43.1	50.1	178.9
240	195.2	44.9	50.0	179.8
300	195.7	43.7	49.5	175.2

Compound	Con	Standard deviation			
MR	1345.3	1345.3 1343.0 1343.6			
MR_NIF	377.8	378.9	375.7	1.33	
MR_RES	350.9	355.5	355.4	2.14	
MR_SES	1461.3	1466.8	1468.7	3.14	

Table S3. Dissolution (5h) and solubility (24h) studies of the drug at pH 1.2 medium

Time (minutes)	MR	MR_NIF	MR_RES	MR_SES
		Concentra	tion in ppm	
15.0	71.8	158.9	36.9	243.3
30.0	148.8	273.3	61.6	416.3
45.0	195.9	300.9	64.8	500.0
60.0	236.5	311.7	63.4	580.6
90.0	287.8	321.1	64.9	624.3
120.0	334.2	343.5	66.5	642.6
150.0	357.0	364.1	65.5	637.6
180.0	369.0	372.6	64.2	631.9
240.0	385.7	382.0	66.5	634.2
300.0	382.5	376.6	64.2	626.7

Compound	Con	Standard deviation		
MR	531.5	533.1	540.2	3.79
MR_NIF	371.1	372.6	372.1	0.62
MR_RES	117.2	116.4	117.9	0.61
MR_SES	596.6	598.8	597.3	0.92

Table S4. Dissolution (5h) and solubility studies (24h) of the drug at pH 7.0 medium

Figure S5: PXRD data of all molecular adducts after dissolution in both pH 1.2 and pH 7.0 indicated that MR.SES was stable, whereas MR.NIF and MR.RES partially transformed to either NIF or RES.

Figure S6: Time-dependent PXRD plot of MR.SES during solubility studies at pH 7.0, illustrating structural stability and decrease of particle size over time.

				24 25 25 15 14 12 15 15 15 15 15 15 15 15 15 15 15 15 15
MR	H-H-28.1 %	H-N-29.6 %	H-O-14.6 %	H-C-12.9 %
,	24 27 20 10 10 10 10 10 10 10 10 10 10 10 10 10	224 22 20 10 10 10 10 10 10 10 10 10 10 10 10 10	24 12 10 14 14 14 14 16 16 16 16 16 16 16 16 16 16	
MR-NIF	H-H-26.3 %	H-N-21.9 %	H-O-16.8 %	H-C-11.9 %
	24 27 28 14 14 14 14 14 14 14 14 14 14 14 14 14			24 22 26 16 14 14 14 15 16 16 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
MR-SES	H-H-30 %	H-N-21 %	H-O-20.5 %	H-C-13%
And Harts	2.4 2.2 2.0 1.8 1.6 1.2 1.0 3.8 3.6 05 0 8 1 0 1 2 1 8 1 6 1 8 2 0 2 2 2 4	2.4 2.2 2.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	24 22 20 18 16 14 12 10 28 10 10 28 10 10 28 10 10 28 10 10 28 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	24 22 10 1.8 1.6 1.4 1.2 1.0 1.8 1.6 1.4 1.2 1.0 1.8 1.6 1.4 1.2 1.0 1.8 1.6 1.4 1.2 1.0 1.8 1.6 1.4 1.2 1.0 1.8 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
MR-RES	H-H-28.5 %	H-N-21.3 %	H-O-15.8 %	H-C-21.2%

Table S5: Hirshfeld Analysis of MR and its cocrystals

Figure S7: Moisture stability studies of all MR cocrystals monitored by PXRD.