Supplementary Information-

I₃⁻ Entrapped Cationic Zn(II) Coordination Polymer: Selective Detection

and Dose-Dependent Photocatalytic Degradation of Roxithromycin

Preeti Sharma^a, Musheer Ahmad^b, Nazrul Haq^c, Kafeel Ahmad Siddiqui^a

^aDepartment of Chemistry, National Institute of Technology Raipur, G E Road Raipur – 492010, Chhattisgarh, India

^bDepartment of Applied Chemistry, Faculty of Engineering and Technology, ZHCET, Aligarh Muslim University, Aligarh, UP (India) – 202002

^cDepartment of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.

E-mail: nhaq@ksu.edu.sa

^a Corresponding Author: Dr. Kafeel Ahmad Siddiqui ^a e-mail: <u>kasiddiqui.chy@nitrr.ac.in</u>

Fig. S1. One-dimensional polymeric non-covalent interaction of Zinc-CP along with crystallography b-axis

Fig. S2. (a) The levels of fluorescence intensity exhibited by **Zinc-CP** in the presence of different organic solvents; and (b) The relative quenching efficiencies of **Zinc-CP** dispersed in aqueous solutions containing specific solvents.

Fig. S3. (a) PXRD pattern of **Zinc-CP** after luminescence detection of antibiotics RXM and AZM (b) Quenching efficiency (%) of **Zinc-CP** over the course of five cycles and (c) Quenching efficiency (%) of **Zinc-CP** over the course of five cycles.

Fig. S4. Spectral overlap between the UV-Vis absorption spectra of Antibiotics (RXM and AZM) with the excitation spectra of **Zinc-CP**.

Fig. S5. (a) UV-Visible absorption spectra of **Zinc-CP** (b) Band gap analysis of **Zinc-CP** using Tauc Plot $(\alpha h v)^2$ (eV cm⁻¹)² Vs Energy (eV).

Fig. S6. (a) PXRD pattern of **Zinc-CP** and after photocatalytic degradation of antibiotics SDZ and RXM (b) degradation efficiency of **Zinc-CP** over the course of five cycles and (c) degradation efficiency of **Zinc-CP** over the course of five cycles.

Fig. S7. Periodic UV-Vis spectra for RXM in presence of (a) 10 mg photocatalyst Zinc-CP;
(b) 20 mg photocatalyst Zinc-CP; (c) 30 mg photocatalyst Zinc-CP; (d) bar plot indicating effect of variable photocatalyst Zinc-CP on percentage photodegradation of RXM.

Fig. S8. Periodic UV-Vis spectra for **RXM** in presence of (a) 20 mg/L of **RXM**; (b) 30 mg/L of **RXM**; (c) 40 mg/L of **RXM**; (d) bar plot indicating effect of variable **RXM** concentration on percentage photodegradation of **RXM** (photocatalyst dosages was fixed at 20 mg/L).

Fig. S9. Periodic UV-Vis spectra for RXM in presence of (a) pH = 6; (b) pH = 7; (c) pH = 8; (d) bar plot indicating effect of variable **pH** on percentage photodegradation of **RXM** with **Zinc-CP**.

Fig. S10. The UV–Vis spectrum for RXM was analyzed in presence of the photocatalyst **Zinc-CP** and different radical trapping agents: (a) L-AA; (b) IPA; (c) TEOA; (d) the effect of trapping agents on the percentage photodegradation of RXM. (e) plot created to illustrate C_t/C_0 vs irradiation time for the photodegradation of RXM with **Zinc-CP** and various trapping agents. (f) a pseudo first-order kinetics plot (ln(C_0/C_t) Vs Time) was generated for

the degradation of RXM with **Zinc-CP** and different trapping agents. (The photocatalyst dosage was set at 20 mg/L and the RXM concentration was set at 30 mg/L).

Fig. S11. The degradation efficiency percentage of antibiotics with and without Zinc-CP.

Table S1 Bond I	Lengths for	Zinc-CP.
-----------------	-------------	----------

Atom	Atom	Length/Å	Atom	Atom	Length/Å
I13	Zn17	2.5825(19)	I15	Zn19	2.587(2)
Zn17	N13	2.173(11)	Zn19	N5	2.123(11)
Zn17	N14	2.114(13)	Zn19	N6	2.103(12)
Zn17	N15	2.206(12)	Zn19	N7	2.209(11)
Zn17	N16	2.082(13)	Zn19	N8	2.070(10)
I14	Zn18	2.582(2)	I16	Zn1A	2.5808(19)
Zn18	N9	2.093(13)	Zn1A	N1	2.158(14)

Zn18	N10	2.166(12)	Zn1A	N2	2.115(11)
Zn18	N11	2.110(12)	Zn1A	N3	2.186(13)
Zn18	N12	2.145(13)	Zn1A	N4	2.067(12)

Table S2 Bond Angles for Zinc-CP.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N13	Zn17	I13	102.8(3)	N5	Zn19	I15	102.6(3)
N14	Zn17	I13	119.3(4)	N6	Zn19	I15	117.9(3)
N14	Zn17	N13	78.8(5)	N6	Zn19	N5	79.2(5)
N15	Zn17	I13	99.7(3)	N7	Zn19	I15	100.4(3)
N15	Zn17	N13	155.2(5)	N7	Zn19	N5	154.8(5)
N15	Zn17	N14	81.1(4)	N7	Zn19	N6	80.9(5)
N16	Zn17	I13	112.6(3)	N8	Zn19	I15	112.9(3)
N16	Zn17	N13	102.2(5)	N8	Zn19	N5	101.8(5)
N16	Zn17	N14	126.5(5)	N8	Zn19	N6	127.6(5)
N16	Zn17	N15	78.5(5)	N8	Zn19	N7	78.5(5)
C52	N13	Zn17	113.8(10)	C24	N5	Zn19	114.5(10)
C56	N13	Zn17	125.4(11)	C28	N5	Zn19	128.0(10)
C50	N14	Zn17	111.7(10)	C22	N6	Zn19	110.1(9)
C51	N14	Zn17	109.1(9)	C23	N6	Zn19	110.7(9)
C48	N15	Zn17	108.0(10)	C20	N7	Zn19	107.7(10)
C49	N15	Zn17	106.3(9)	C21	N7	Zn19	107.6(9)
C43	N16	Zn17	124.6(11)	C15	N8	Zn19	124.4(10)
C47	N16	Zn17	117.2(12)	C19	N8	Zn19	116.4(12)
N9	Zn18	I14	113.1(3)	N1	Zn1A	I16	102.0(3)
N10	Zn18	I14	100.0(4)	N2	Zn1A	I16	119.8(3)
N10	Zn18	N9	81.2(5)	N2	Zn1A	N1	78.9(5)
N11	Zn18	I14	118.5(4)	N3	Zn1A	I16	100.4(3)

N11	Zn18	N9	127.3(5)	N3	Zn1A	N1	155.0(5)
N11	Zn18	N10	80.0(5)	N3	Zn1A	N2	80.5(5)
N12	Zn18	I14	102.7(4)	N4	Zn1A	I16	112.6(3)
N12	Zn18	N9	101.2(5)	N4	Zn1A	N1	101.5(5)
N12	Zn18	N10	153.9(5)	N4	Zn1A	N2	126.4(4)
N12	Zn18	N11	78.0(5)	N4	Zn1A	N3	79.9(5)
C38	N9	Zn18	114.7(10)	C1	N1	Zn1A	127.1(13)
C42	N9	Zn18	127.7(12)	C5	N1	Zn1A	113.2(11)
C36	N10	Zn18	110.0(9)	C7	N2	Zn1A	109.5(9)
C37	N10	Zn18	107.6(9)	C8	N3	Zn1A	108.6(10)
C34	N11	Zn18	111.9(9)	С9	N3	Zn1A	107.8(9)
C35	N11	Zn18	111.5(9)	C10	N4	Zn1A	117.3(11)
C29	N12	Zn18	126.5(13)	C14	N4	Zn1A	125.2(12)
C33	N12	Zn18	116.1(11)				

Table S3: Influence of SDZ and RXM Concentration, Zinc-CP Dosage, and pH Variationson the Photocatalytic Degradation Process.

S.No.	Effect of Reaction Parameters	Degradation (%)	
		SDZ	RXM
1.	Effect of Dosages of Zinc-CP		
a.	10 mg/L	91.69	92.69
b.	20 mg/L	97.59	94.52

c.	30 mg/L	83.59	87.89
2.	Effect of Concentration of Antibiotics (SDZ & RXM)		
a.	20 mg/L	88.58	85.71
b.	30 mg/L	97.59	94.52
с.	40 mg/L	83.59	79.46
3.	Effect of pH level		
a.	pH = 6	87.93	86.36
b.	pH = 7	97.59	94.52
с.	pH = 8	76.17	79.82