Supporting information

A Dual-Emission Fluorescence Sensor Based on TCPP@UiO-66-NH₂

for High-Sensitivity Detection of Copper Ions

Jia-qi Du,^a Du-wei Lin,^a Wen-yi Chen,^a Qian Sun*^a, En-qing Gao^b

^a School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China, E-mail: xsun@chem.ecnu.edu.cn

^b Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.

Contents

S1 The prepared samples (Left: UiO-66-NH₂, Right: TCPP@UiO-66-NH₂) and their suspension liquids before and after TCPP doping. (photographs taken under UV-lamp, excited at 360 nm)

S2 XRD patterns of the (a) series TCPP@UiO-66-NH₂ and standard PCN-222. (b) Series TCPP@UiO-66-NH₂ fluorescence emission spectra and photographs ($\lambda_{ex} = 300$ nm).

S3 TGA image of UiO-66-NH₂ and TCPP@UiO-66-NH₂ (in air).

S4 The N_2 adsorption-desorption isotherm (a) and the pore size distribution (b) of UiO-66-NH₂ and TCPP@UiO-66-NH₂.

S5 (a) The XRD of TCPP@UiO-66-NH₂ before and after application. (b) Line chart of I_{466}/I_{654} ratio changes in TCPP@UiO-66-NH₂ probe solution during 7 days. (c) Line chart of I_{466}/I_{654} ratio changes cycled four times TCPP@UiO-66-NH₂.

Table S1 Statistical data on the linear response range and detection limit of Cu²⁺ based on fluorescent MOFs probes.

Fig. S1. The prepared samples (Left: UiO-66-NH₂, Right: TCPP@UiO-66-NH₂) and their suspension liquids before and after TCPP doping. (photographs taken under UV-lamp, excited at 360 nm)

Fig. S2. XRD patterns of the (a) series TCPP@UiO-66-NH₂ and standard PCN-222. (b) Series TCPP@UiO-66-NH₂ fluorescence emission spectra and photographs ($\lambda_{ex} = 300 \text{ nm}$).

Fig. S4. The N₂ adsorption-desorption isotherm (a) and the pore size distribution (b) of

UiO-66-NH₂ and TCPP@UiO-66-NH₂.

Fig. S5. (a) The XRD of TCPP@UiO-66-NH₂ before and after application. (b) Line chart of I_{466}/I_{654} ratio changes in TCPP@UiO-66-NH₂ probe solution during 7 days. (c) Line chart of I_{466}/I_{654} ratio changes cycled four times TCPP@UiO-66-NH₂.

MOF	Linear range (µM)	LOD	Ref.
PCN-222-Pd(II)	0-2	50 nM	1
MIL-53-L	0-400	10 µM	2
$\{[Nd_2(NH_2-BDC)_3(DMF)_4]\}_n$	0-10 ⁴	24.95 µM	3
Cd-MOF-74	0-5950	0.037 mM	4
MOF-525	0-20	67 nM	5
Eu ³⁺ @CAU-11	50-10 ⁴	6.2 μM	6
CDs-PCN-224	0-10	44 nM	7
TCPP@UiO-66-NH ₂	0-10	24 nM	This work

 Table S1 Statistical data on the linear response range and detection limit of Cu²⁺ based

 on fluorescent MOFs probes.

References

- 1. Y.-Z. Chen and H.-L. Jiang, *Chemistry of Materials*, 2016, **28**, 6698-6704.
- 2. C. Liu and B. Yan, Sensors and Actuators B-Chemical, 2016, 235, 541-546.
- 3. J. Luo, B. S. Liu, C. Cao and F. Wei, *Inorganic Chemistry Communications*, 2017, **76**, 18-21.
- T.-T. Zheng, J. Zhao, Z.-W. Fang, M.-T. Li, C.-Y. Sun, X. Li, X.-L. Wang and Z.-M. Su, *Dalton Transactions*, 2017, 46, 2456-2461.
- 5. L. Li, S. Shen, R. Lin, Y. Bai and H. Liu, *Chemical Communications*, 2017, **53**, 9986-9989.
- 6. Y. Zhang and B. Yan, *Talanta*, 2019, **197**, 291-298.
- 7. W. Zhou, Z. Hu, J. Wei, H. Lu, H. Dai, J. Zhao, W. Zhang and R. Guo, *Composites Communications*, 2022, **33**.