ARTICLE

Supporting information

Preparation of porous ammonium dinitramide crystals and efficient catalytic decomposition of corresponding iron oxide assembled composite particles

Yuanlu Cui^a, Chong Teng^a, Jingjing Li^b, Zheng Huo^a, Kai Xin^a, Jinxian Zhai^a, Rongjie Yang^{a, *} ^aSchool of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China. ^bChina Ordance Industrial Standardization Research Institute, Beijing 100089, China.

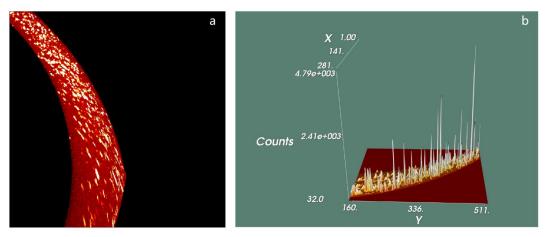

Table of Contents

Figure S1 Diffraction results of spherical ADN single crystals with particle sizes larger than 300µm.

Figure S2 XRD diffraction pattern of Fe₂O₃, ADN, ADN+Fe₂O₃ and ADN@Fe₂O₃.

Figure S3 DSC curves of ADN, ADN+Fe₂O₃ and ADN@Fe₂O₃ under different heating rates.

Figure S4 Fitting curves of $\lg \beta$ versus $\frac{1}{T}$ using Ozawa formula :(a) ADN; (b) ADN+Fe₂O₃; (c) ADN@Fe₂O₃; (d) Global apparent activation energy of different samples.

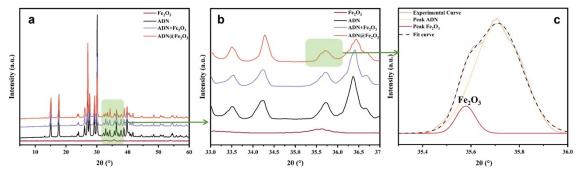


Figure S2 XRD diffraction pattern of Fe₂O₃, ADN, ADN+Fe₂O₃ and ADN@Fe₂O₃.

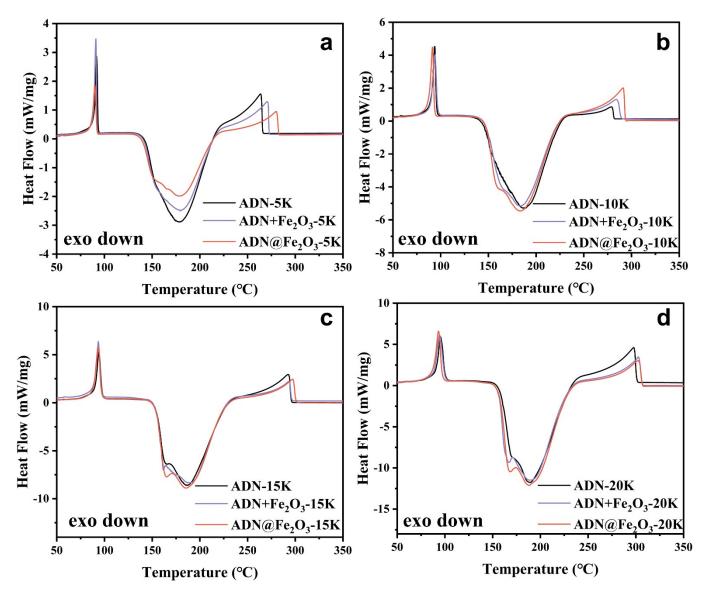


Figure S3 DSC curves of ADN, ADN+Fe2O3 and ADN@Fe2O3 under different heating rates.

Using the Ozawa method to process the results of thermal decomposition and obtain the changes in the E_a of the sample decomposition process is also a commonly used thermal decomposition analysis method. The Ozawa formula is as follows:

$$lg\beta = lg\left[\frac{AE}{RG(\alpha)}\right] - 2.315 - 0.4567\frac{E_a}{RT}$$

In the equation, α represents the conversion rate, T is the corresponding temperature for this conversion rate, β is the heating rate, A is the pre-exponential factor, E_{α} is the global apparent activation energy, and R is the molar gas constant, $G(\alpha)$ depends on the mechanism function. The least squares method is used for linear fitting of ADN, ADN+Fe₂O₃ and ADN@Fe₂O₃ results under different conversion rates, as shown in Figure. S4.

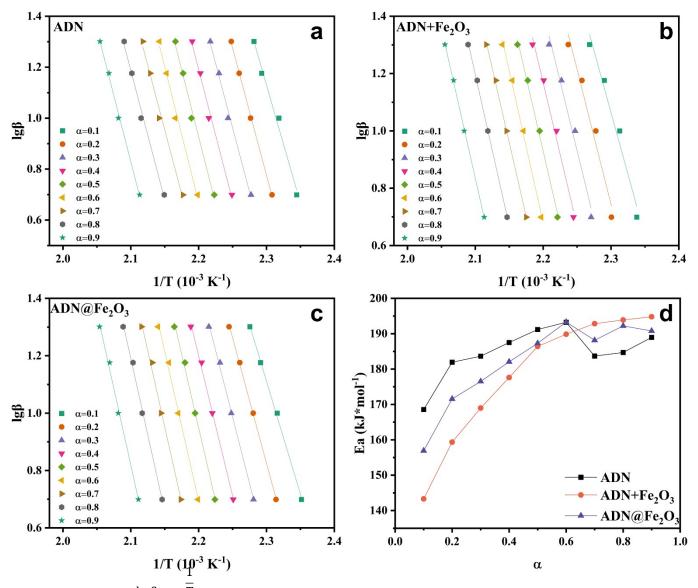


Figure S4 Fitting curves of $\lg \beta$ versus T using Ozawa formula :(a) ADN; (b) ADN+Fe₂O₃; (c) ADN@Fe₂O₃; (d) Global apparent activation energy of different samples.