Electronic supplementary information

for

An unsymmetrically sandwiched bis(O3S2-macrocycle) lead(II) complex via an endo/exo-coordination mode

Seulgi Kim,* Kyunghye Ju, Taehun Kim and In-Hyeok Park*

Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea

Experimental

General procedures

All chemicals and solvents used in the syntheses were of reagent grade and were used without further purification. ESI-mass spectra were obtained employing a Thermo Scientific LCQ Fleet spectrometer. The FT-IR spectra were recorded using Varian 640-IR FT-IR Spectrometer with KBr pellets. The elemental analysis was carried out using a Thermo Scientific Flash 2000 Series elemental analyser. The nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 500 (500 MHz). FT-IR spectra are recorded using Spectrum Two FT-IR Perkinelmer with KBr pellets

Preparation of [Pb(L)₂(ClO₄)]ClO₄·0.5CH₂Cl₂·0.5CH₃CN (1).

Pb(ClO₄)₂·3H₂O (14.7 mg, 0.032 mmol) in acetonitrile (1.0 mL) was added to a solution of L (10.0 mg, 0.027 mmol) in dichloromethane (1.0 mL). Slow evaporation of the solution afforded a colourless crystalline product **1** suitable for X-ray analysis. Yield: 32%; IR (KBr): 2935, 2886, 1598, 1492, 1449, 1292, 1246, 1090, 1069, 1045 (ClO₄⁻), 929, 764 cm⁻¹. Grinding the product for microanalysis led to removing the solvent molecules to yield a product. Anal. calc. for C₄₀H₄₈Cl₂O₁₄PbS₄: C, 41.45; H, 4.17. Found: C, 41.65.; H, 4.55%. Mass spectrum *m/z* (ESI): 1059 for [Pb(L)₂(ClO₄)]⁺.

Caution: Since the perchlorate compound could be explosive, it should be handled with great care!

X-ray crystallographic analysis

Crystal data were collected on a Bruker SMART APEX II ULTRA diffractometer equipped with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Data collection, data reduction and semi-empirical absorption correction were carried out using the software package of APEX2.^{S1} All of the calculations for the structure determination were carried out using the SHELXTL package.^{S2} Relevant crystal data collection and refinement data are summarised in Table S1.

CCDC 2389314 (1) contain supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

S1. Bruker, APEX2 Version 2009.1-0 Data Collection and Processing Software (Bruker AXS Inc., Madison, Wisconsin, U.S.A., 2008).

S2. Bruker. SHELXTL-PC Version 6.22 Program for Solution and Refinement of Crystal Structures. 2001.

Formula	$C_{83}H_{101}Cl_6NO_{28}Pb_2S_8$	
Formula weight	2444.20	
Temperature	173	
Crystal system	Monoclinic	
Space group	$P2_{1}/n$	
Ζ	2	
a (Å)	15.4259(2)	
<i>b</i> (Å)	21.5068(3)	
<i>c</i> (Å)	15.6995(2)	
α (°)	90	
β (°)	112.9730(10)	
γ (°)	90	
$V(Å^3)$	4795.40(11)	
$D_{\rm calc}$ (g/cm ³)	1.693	
$2\theta_{\max}(^{\circ})$	52.00	
$R_1, wR_2 [I > 2\sigma(I)]$	0.0369, 0.0745	
R_1, wR_2 [all data]	0.0553, 0.0807	
Goodness-of-fit on F ²	1.031	
No. of reflection used [> $2\sigma(l)$]	9419 [$R_{\rm int} = 0.0726$]	
Refinement	42433	

 Table S1
 Crystallographic data and refinement parameter of 1

 1

Table 52 Beleet	cu bonu ienguis (A) and			
Pb1-S1	2.9022(13)	Pb1-O1	2.854(3)	
Pb1-S2	2.9897(12)	Pb1-O2	2.806(3)	
Pb1-S3	2.9015(11)	Pb1-O3	2.951(1)	
Pb1-S4	3.1003(12)	Pb1-O8	2.781(9)	
S1-Pb1-S2	70.19(3)	S3-Pb1-O1	141.36(7)	
S1-Pb1-S3	78.04(3)	S3-Pb1-O2	150.36(7)	
S1-Pb1-S4	68.11(3)	S3-Pb1-O3	102.55(4)	
S1-Pb1-O1	75.15(7)	S3-Pb1-O8	83.86(3)	
S1-Pb1-O2	131.58(7)	S4-Pb1-O1	74.65(7)	
S1-Pb1-O3	135.94(7)	S4-Pb1-O2	115.88(7)	
S1-Pb1-O8	140.93(7)	S4-Pb1-O3	154.19(4)	
S2-Pb1-S3	67.06(3)	S4-Pb1-O8	73.21(1)	
S2-Pb1-S4	124.47(3)	O1-Pb1-O2	61.58(9)	
S2-Pb1-O1	126.39(7)	O1-Pb1-O3	116.07(4)	
S2-Pb1-O2	119.04(7)	O1-Pb1-O8	100.02(9)	
S2-Pb1-O3	69.87(9)	O2-Pb1-O3	58.90(3)	
S2-Pb1-O8	132.41(5)	O2-Pb1-O8	71.27(2)	
S3-Pb1-S4	69.75(3)	O3-Pb1-O8	81.59(1)	

Table S2 Selected bond lengths (Å) and bond angles (°) for 1

_

Recently, we have reported a poly(sandwich)-type Cs⁺ complex of bis-o-xylyl-(17-crown-5) as the first example of infinite sandwich-type macrocyclic complexes (Fig. S1a, see Type A in Scheme 1a).^{S1} Some Pd²⁺ complexes of bis(O₂S₂-macrocycle), adopting an *edge-to-edge* mode (Fig. S1b, see Type B in Scheme 1b) were isolated via mole-ratio-controlled approaches. ^{S2, S3} An unsymmetrically sandwiched silver(I) complex [Ag(L')₂]PF₆ (L': NO₂S₂-macrocycle, Fig.S1c, see Type C in Scheme 1c) also has been reported by the Lee group as the first example of this type. ^{S4}

Fig. S1 Some extended sandwich-type macrocyclic complexes reported previously: (a) onedimensional polymeric Cs⁺-complex (*face-to-face*), (b) Pd^{2+} -complex (*edge-to-edge*) and (c) Ag⁺complex (*edge-to-face*).

References

- S1. S. Kim, I.-H. Park, S. S. Lee, W. Sim and J. Y. Lee, CrystEngComm, 2020, 22, 5601-5605.
- S2. S. Y. Lee, S. Park and S. S. Lee, Inorg. Chem., 2009, 48, 11335-11341.
- S3. S. Y. Lee, S. Park and S. S. Lee, Inorg. Chim. Acta, 2009, 362, 1047-1052.
- S4. H. J. Kim, K. F. Sultana, J. Y. Lee and S. S. Lee, CrystEngComm, 2010, 12, 1494-1500.

Fig. S2 Crystal structure of $[Pb(L)_2(ClO_4)]ClO_4 \cdot 0.5CH_2Cl_2 \cdot 0.5CH_3CN$ (1) showing non-coordinated anion and solvent molecules.

Fig. S3 (a) ¹H NMR titration of L (1.0×10^{-3} M) with lead(II) perchlorate in CDCl₃/CD₃CN (v/v 1:1) and (b) titration curves for each proton in L.

Fig. S4 HyperNMR output for (a) $H_{a,b}$, (b) $H_{c,d}$, (c) H_1 , (d) H_2 , (e) H_3 and (f) H_4 signals (circles, squares and triangles: experimental points, solid lines: theoretical fit for the $[PbL]^{2+}$ (1:1) model). log K = 5.9(5) for the 1:1 complexation.

Fig. S5 FAB-mass spectrum of 1.

Fig. S6 FT-IR spectra of L and 1.