Supporting Information For the Manuscript

Sulfur-hinged L-shaped ligand-based Cd(II)-organic framework: A fluorescent

tool for targeting environmental nitroaromatics⁺

Nitu Rani,^a Aman K. K. Bhasin,^b Ahamd Husain,^c Annu Kumari, ^d Reshu Verma,^d K. K. Bhasin*^a and Girijesh Kumar*^d

^aDepartment of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India ^bDepartment of Chemistry, DAV University Jalandhar, Punjab-144012, India ^cDepartment of Chemistry, Amity University, Sector 82A, Mohali, Punjab-140306, India ^dDepartment of Chemistry, University of Allahabad, Prayagraj, Uttar Pradesh-211002, India. Email: girijeshkumar@allduniv.ac.in, girijeshchem@gmail.com

Table of o	content:	P. No.
	Scheme S1. Synthesis of ligand L ^{4-py}	S4
Fig. S1	¹ H NMR spectrum of ligand L^{4-py} in DMSO-d ₆ .	S4
Fig. S2	13 C NMR spectrum of ligand L ^{4-py} in DMSO-d ₆ .	S5
Fig. S3	FT-IR spectrum of ligand L ^{4-py} .	S6
Fig. S4	FT-IR spectra of Cd-MOF .	S6
Fig. S5	UV-Visible spectra of ligand L ^{4-py} , co-ligand H ₂ nipa, Cd-MOF in DMSO.	S7
Fig. S6	CHNS data of Cd-MOF .	S8
Fig. S7	H-bonding interactions involving N–HN and N–HO of amide functionalities of ${\tt L^{4-}}^{\rm Py}$	S9
Fig. S8	PXRD pattern for Cd-MOF , bulk sample (red trace) and the one simulated from the single crystal structural analysis (black trace) using Mercury 4.0.	S9
Fig. S9	TGA plot for Cd-MOF .	S10
Fig. S10	DSC plot for Cd-MOF .	S10
Fig. S11	Emission spectra of ligand L^{4-py} , co-ligand H_2 nipa.	S11
Fig. S12	Emission spectra of Cd-MOF.	S11
Fig. S13	(a) Emission Profile of Cd-MOF in different solvents. (b) Emission Profile of Cd-MOF in H ₂ O and dry MeOH, wherein the highest emission intensity observed.	S12
Fig. S14	PXRD pattern of Cd-MOF and the samples recovered after soaking in H_2O and MeOH for 24 h.	S12
Fig. S15	TGA plot of Cd-MOF and the samples recovered after soaking in MeOH and H_2O for 24 h.	S13
Fig. S16	FT-IR spectrum of Cd-MOF and the samples recovered after soaking in H ₂ O at different pH for 24 h.	S13
Fig. S17	PXRD pattern of Cd-MOF and the samples recovered after soaking in H ₂ O at different pH for 24 h.	S14
Fig. S18	FT-IR spectrum of Cd-MOF and the samples recovered after soaking in H_2O at different temperature for 24 h.	S14
Fig. S19	PXRD pattern of Cd-MOF and the samples recovered after soaking in H_2O at different temperature for 24 h.	S15
Chart S1	Chemical structures of nitroaromatics used in present sensing study.	S15
	Calculation of Stern–Volmer constant (K_{sv}) and limit of detection (LOD).	S16
Fig. S20	(a,b) S–V plot for the recognition of 4-NP and 4-NT, respectively. (c-d) Limit of detection calculation plots for the sensing of 4-NP and 4-NT analytes by Cd-MOF respectively.	S17
Fig. S21	The relative fluorescence intensity of Cd-MOF upon addition of solution of 2,4-DNP, 2-NP, 2-NA respectively.	S18
Fig. S22	(a-c) S–V plot for the recognition of 2,4-DNP, 2-NP and 2-NA respectively. (d-f) Limit of detection calculation plots for the sensing of 2,4-DNP, 2-NP and 2-NA analytes by Cd-MOF respectively.	S19
Fig. S23	The relative fluorescence intensity of Cd-MOF upon addition of solution of 4-NA, 3-NA, 3-NBA respectively.	S20

Fig. S24	(a-c) S–V plot for the recognition of 4-NA, 3-NA and 3-NBA respectively. (d-f) Limit of detection calculation plots for the sensing of 4-NA, 3-NA and 3-NBA analytes by Cd-	S21
	MOF respectively.	
Fig. S25	The relative fluorescence intensity of Cd-MOF upon addition of solution of 4-NB, 2,4,6-TNP and 1,3-DNB respectively.	S22
Fig. S26	(a-c) S–V plot for the recognition of 4-NB, 2,4,6-TNP and 1,3-DNB respectively. (d-f) Limit of detection calculation plots for the sensing of 4-NB, 2,4,6-TNP and 1,3-DNB analytes by Cd-MOF respectively.	S23
Fig. S27	Time dependent fluorescence response of Cd-MOF towards 4-NP, 4-NT and 2,4-DNP.	S24
Fig. S28	Relative emission intensity of Cd-MOF upon addition of 50 μ L of 4-NP and 4-NT (from 10 mM stock solution) in the presence of 50 μ L of other nitroaromatics in CH ₃ OH.	S24
	Calculation of binding constant using Benesi-Hildebrand and fluorescence method:	S25
Fig. S29	(a-d) BH plot from the fluorescence titration data of receptor Cd-MOF (suspension) with 4-NP or 4-NT or 2,4-DNP or 2-NP respectively.	S26
Fig. S30	(a-d) BH plot from the fluorescence titration data of receptor Cd-MOF (suspension) with 2-NA, 4-NA, 3-NA and 3-NBA respectively.	S27
Fig. S31	(a-c) BH plot from the fluorescence titration data of receptor Cd-MOF (suspension) with 4-NB, 2,4,6-TNP and 1,3-DNB respectively.	S28
Fig. S32	(a-b) FTIR patterns of original sample of Cd-MOF (black) and the recovered sample of Cd-MOF after each cycle of quenching with 4-NP and 4-NT.	S29
Fig. S33	(a-b) PXRD patterns of original sample of Cd-MOF (experimental, red trace; simulated, black) and the recovered sample of Cd-MOF after each cycle of quenching with 4-NP and 4-NT.	S30
Fig. S34	(a-b) Lifetime decay curves of Cd-MOF before and after the addition of 4-NP and 4-NT, respectively.	S31
Fig. S35	Theoretically optimized HOMO and LUMO energies of L ^{4-py} , H ₂ nipa and examined nitroaromatics using the B3LYP/6-31G protocol.	S32
Fig. S36	(a) XPS spectrum of Cd-MOF before sensing. (b-d) XPS spectrum of Cd-MOF for N 1s, O 1s, S 2p before sensing. (e) XPS spectrum of Cd-MOF after sensing 4-NP. (f-h) XPS spectrum of Cd-MOF for N 1s, O 1s, S 2p after sensing 4-NP. (i) XPS spectrum of Cd-MOF after sensing 4-NT. (j-l) XPS spectrum of Cd-MOF for N 1s, O 1s, S 2p after sensing 4-NT.	S33
Table S1	Crystal data and structure refinement for L ^{4-Py} and Cd-MOF.	S34
Table S2	Selected bond length and angles for Cd-MOF.	S35
Table S3	Hydrogen bonds for ligand L ^{4-py} .	S36
Table S4	Hydrogen bonds for Cd-MOF.	S36
Table S5	Fluorescence quantum yields of the L ^{4-py} , co-ligand H ₂ nipa and Cd-MOF.	S36
Table S6	Stern–Volmer (SV) quenching constant and detection limits of all examined analytes.	S37
Table S7	A comparative list of various fluorescent MOFs including Cd-MOF that have been used for sensing of various nitro aromatic compounds (NACs).	S38
Table S8	Integral Orbital Overlap J(λ) values of nitro-analytes.	S39
	Calculation of extent of overlapping.	S39
	References	S39-
		S40

Synthesis of ligand N, N'-(thiobis(4,1-phenylene)) diisonicotinamide (L^{4-py}).^{S1} The ligand L^{4-py} has been synthesized using isonicotinic acid (0.227 g, 0.92 mmol) and 4,4'-thiodianiline (0.100 g, 0.46 mmol) which were dissolved in pyridine (3 mL) and heated at 90 °C for 40 min (Scheme S1). After heating the solution triphenylphosphite (TPP) (0.241 mL, 0.92 mmol) was added drop wise and the reaction was stirred for 8 h. The progress of the reaction was monitored by thin-layer chromatography (TLC). After completion of the reaction, ice-cold water was added to it and an off-white solid precipitated out filtered off and was washed with cold water several times followed by diethyl ether. The precipitates were dried at 60 °C for 12 h in an oven. Yield (0.180 g, 91 %; based on 4,4'-thiodianiline). FT-IR spectrum (selected peaks; v cm⁻¹): 3288 (N-H), 1647, 1590 (C=O_{amide}). ¹H NMR (500 MHz, DMSO-*d*₆); δ_{ppm} 7.35-7.37 (*d*, 4H, *J* = 8.7 Hz, H_a), 7.85-7.86 (*d*, 4H, *J* = 6.0 Hz, H_b), 7.80-7.81 (*d*, 4H, *J* = 8.7 Hz, H_c), 8.78-8.80 (*d*, 4H, *J* = 5.9 Hz, H_d), 10.60 (*s*, 2H, He). ¹³C NMR (126 MHz, DMSO-*d*₆) δ_{ppm} 163.96, 150.17, 141.64, 137.93, 131.26, 129.88, 121.45, 121.24.

Scheme S1. Synthesis of ligand N, N'-(thiobis(4,1-phenylene)) diisonicotinamide (L^{4-py}).

Fig. S1. ¹H NMR spectrum of ligand L^{4-py} in DMSO-*d*₆. *Represents the residual water peak is at 3.33 ppm.

Fig. S2. ¹³C NMR spectrum of ligand L^{4-py} in DMSO- d_6 . *Represents the solvent residual peak.

Fig. S3. FT-IR spectrum of ligand L^{4-py}.

Fig. S4. FT-IR spectrum of Cd-MOF.

Fig. S5. UV-Visible spectra of ligand L^{4-py} , co-ligand H_2 nipa and Cd-MOF in DMSO.

Deptt. of CIL , Panjab University Chandigarh

Company name:	ThermoFinnigan
Analysed:	15-07-2024 14:10
Printed:	19-12-2024 15:03
Sample ID:	Cd-MOF
Analysis type:	UnkNown
Chromatogram filename:	C:\CHNS-O\SAIF\CHNS\User 2024\July\15-7-2024\8.DAT
Calibration method:	K Factors
Sample weight:	2.369

Peak N (#)	umb e r	Retent(min)	ion	Time	C o mp o n e n t	N a m e	Element	%
1		0.800			Nitrogen		9.013	
2		1.267			Carbon		51.01	
3		4.842			Hydrogen		4.151	
4		10.625			Sulphur		3.336	
							67.51	

Fig. S6. CHNS data of Cd-MOF.

Fig. S7. H-bonding interactions involving N–H---N and N–H---O of amide functionalities of L^{4-Py}.

Fig. S8. PXRD pattern for **Cd-MOF** bulk sample (red trace) and the one simulated from the single crystal structure analysis (black trace).

Fig. S9. TGA plot for Cd-MOF.

Fig. S10. DSC plot for Cd-MOF.

Fig. S11. Emission spectra of (a) L^{4-py} and (b) co-ligand H_2 nipa.

Fig. S12. Emission spectra Cd-MOF.

Fig. S13. (a) Emission Profile of **Cd-MOF** in different solvents. (b) Emission Profile of **Cd-MOF** in H_2O and dry MeOH, wherein the highest emission intensity observed.

Fig. S14. PXRD pattern of Cd-MOF and the samples recovered after soaking in H_2O and MeOH for 24 h.

Fig. S15. TGA plot of Cd-MOF and the samples recovered after soaking in MeOH and H₂O for 24 h.

Fig. S16. FT-IR spectrum of Cd-MOF and the samples recovered after soaking in H_2O at different pH for 24 h.

Fig. S17. PXRD patterns of Cd-MOF and the samples recovered after soaking in H_2O at different pH for 24 h.

Fig. S18. FT-IR spectrum of **Cd-MOF** and the samples recovered after soaking in H_2O at different temperature for 24 h.

Fig. S19. PXRD patterns of Cd-MOF and the samples recovered after soaking in H_2O at different temperature for 24 h.

Chart S1. Chemical structures of nitroaromatics compounds used in the present sensing study.

Stern–Volmer constant (K_{sv}) and detection limit calculation:

Estimation of fluorescence titrations using the following Stern-Volmer equation.^{\$2}

$$I_0/I = 1 + K_{SV}[A]$$
 (1)

Where, I₀ = emission intensity without analyte

I = emission intensity with analyte

[A] = molar concentration of the analyte

K_{SV} = Stern-Volmer constant

The limit of detection (LOD) for the organic amine analytes were calculated using equation

Detection limit: $3\sigma/k$ (2)

Where, σ = standard deviation calculated from the blank measurements

k= slope of the titration plot of emission intensity

Fig. 20. (a, b) S–V plot for the recognition of 4-NP and 4-NT respectively. (c, d) Limit of detection calculation plots for the sensing of 4-NP and 4-NT by **Cd-MOF**.

Fig. S21. The relative fluorescence intensity of **Cd-MOF** upon addition of solution of 2,4-DNP, 2-NP, 2-NA respectively.

Fig. S22. (a-c) S–V plot for the recognition of 2,4-DNP, 2-NP and 2-NA respectively. (d-f) Limit of detection calculation plots for the sensing of 2,4-DNP, 2-NP and 2-NA analytes by **Cd-MOF** respectively.

Fig. S23. The relative fluorescence intensity of **Cd-MOF** upon addition of solution of 4-NA, 3-NA, 3-NBA respectively.

Fig. S24. (a-c) S–V plot for the recognition of 4-NA, 3-NA and 3-NBA respectively. (d-f) Limit of detection calculation plots for the sensing of 4-NA, 3-NA and 3-NBA analytes by **Cd-MOF** respectively.

Fig. S25. The relative fluorescence intensity of **Cd-MOF** upon addition of solution of 4-NB, 2,4,6-TNP and 1, 3-DNB, respectively.

Fig. S26. (a-c) S–V plot for the recognition of 4-NB, 2,4,6-TNP and 1,3-DNB respectively. (d-f) Limit of detection calculation plots for the sensing of 4-NB, 2,4,6-TNP and 1,3-DNB analytes by **Cd-MOF** respectively.

Fig. S27. Time dependent fluorescence response of Cd-MOF towards 4-NP, 4-NTand 2,4-DNP.

Fig. S28. Relative emission intensity of **Cd-MOF** upon addition of 50 μ L of 4-NP and 4-NT (from 10 mM stock solution) in the presence of 50 μ L of other nitroaromatics in CH₃OH.

Calculation of binding constant using Benesi-Hildebrand and fluorescence method:

Calculation of binding constant using Benesi-Hildebrand and fluorescence method: The value of binding constant of organic amines with **Cd-MOF** has been determined from the emission intensity data following the modified Benesi–Hildebrand equation.⁵³

$$1/\Delta I = 1/\Delta I_{max} + (1/K_b[C])(1/\Delta I_{max})$$
(3)

Here, $\Delta I = I - I_{min}$ and $\Delta I_{max} = I_{max} - I$, where I_{min} , I, and I_{max} are the emission intensities of sensor material measured in the absence of concern analytes, at an intermediate analyte's concentration, and at a concentration of complete saturation.

Whereas, K_b and [C] represent the binding constant and concentration of particular analytes, respectively. The K_b could be determined from the slope of a straight line of plot $1/(A-A_o)$ against 1/[Analyte].

Fig. S29. (a-d) BH plot from the fluorescence titration data of receptor **Cd-MOF** (suspension) with 4-NP, 4-NT, 2,4-DNP and 2-NP respectively.

Fig. S30. (a-d) BH plot from the fluorescence titration data of receptor **Cd-MOF** (suspension) with 2-NA, 4-NA, 3-NA and 3-NBA respectively.

Fig. S31. (a-c) BH plot from the fluorescence titration data of receptor **Cd-MOF** (suspension) with 4-NB, 2,4,6-TNP and 1,3-DNB respectively.

Fig. S32. (a-b) FT-IR patterns of original sample of **Cd-MOF** (black) and the recovered sample of **Cd-MOF** after each cycle of quenching with 4-NP and 4-NT respectively.

Fig. S33. (a-b) PXRD patterns of original sample of **Cd-MOF** (experimental, red trace; simulated, black) and the recovered sample of **Cd-MOF** after each cycle of quenching with 4-NP and 4-NT respectively.

Fig. S34. (a-b) Lifetime decay curves of **Cd-MOF** before and after the addition of 4-NP and 4-NT, respectively.

Fig. S35. Theoretically optimized HOMO and LUMO energies of L^{4-py} , H_2 nipa and examined nitroaromatics using the B3LYP/6-31G protocol.

Fig. S36. (a) XPS spectrum of **Cd-MOF** before sensing. (b-d) XPS spectrum of **Cd-MOF** for N 1s, O 1s, S 2p before sensing. (e) XPS spectrum of **Cd-MOF** after sensing 4-NP. (f-h) XPS spectrum of **Cd-MOF** for N 1s, O 1s, S 2p after sensing 4-NP. (i) XPS spectrum of **Cd-MOF** after sensing 4-NT. (j-l) XPS spectrum of Cd-MOF for N 1s, O 1s, S 2p after sensing 4-NT.

Table S1. Crystal data and structure refinement for L^{4-Py} and Cd-MOF.

	L ^{4-Py}	Cd-MOF
CCDC number	2371129	2371128
Empirical formula	C ₂₄ H ₁₈ N ₄ O ₂ S	$C_{40}H_{40}CdN_7O_{11}S$
Formula weight	426.48	939.25
Temperature [K]	293(2)	220(80)
Crystal system	triclinic	monoclinic
Space group (number)	<i>P</i> 1(2)	<i>C</i> 2/ <i>c</i> (15)
<i>a</i> [Å]	9.3689(3)	37.8579(8)
<i>b</i> [Å]	12.8121(3)	9.96330(10)
<i>c</i> [Å]	18.4744(3)	28.3070(6)
α[°]	98.161(2)	90
β[°]	90.769(2)	109.014(2)
γ [°]	111.088(2)	90
Volume [ų]	2043.11(9)	10094.5(3)
Ζ	4	8
$ ho_{calc} [gcm^{-3}]$	1.386	1.236
μ [mm ⁻¹]	0.188	0.530
F(000)	888	3848
Crystal colour	Colourless	Yellow
Crystal shape	Block	block
Radiation	Μο <i>Κ</i> _α (λ=0.71073 Å)	Mo <i>K</i> _α (λ=0.71073 Å)
2θ range [°]	6.69 to 54.78 (0.77 Å)	6.25 to 54.91 (0.77 Å)
Index ranges	$-12 \le h \le 12; -15 \le k \le 16; -23 \le l \le$	$-47 \le h \le 47; -12 \le k \le 12; -36$
	23	≤ / ≤ 36
Reflections collected	19420	68409
Independent reflections	7699; R _{int} = 0.0375; R _{sigma} = 0.0502	10864; R _{int} = 0.0624; R _{sigma} =
		0.0464
Completeness to θ = 26.000°	91.4 %	99.5 %
Data / Restraints / Parameters	7699/0/559	10864/495/434
Absorption correction T_{min}/T_{max}	0.962/0.972	0.57767/1.00000
(method)	(multi-scan)	(multi-scan)
Goodness-of-fit on F ²	1.118	1.071
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0519; wR_2 = 0.1276$	$R_1 = 0.0412; wR_2 = 0.1228$
Final R indexes [all data]	$R_1 = 0.0825; wR_2 = 0.1423$	$R_1 = 0.0546; wR_2 = 0.1367$
Largest peak/hole [eÅ ⁻³]	0.29/-0.24	0.58/-0.53

Table S2. Selected bond length and angles for Cd-MOF.

Bond	Bond Length	Bond	Bond Angles
Cd104 ^{#1}	2.506(2)	01–Cd1–O2	96.53(9)
Cd1-02	2.496(2)	01–Cd1–O5 ^{#1}	90.57(9)
Cd105 ^{#1}	2.322(2)	O1-Cd1-N4 ^{#2}	169.43(9)
Cd1-01	2.318(3)	O1–Cd1–N1	85.65(9)
Cd1-03	2.279(2)	O1-Cd1-C8 ^{#1}	85.98(10)
Cd1-N4 ^{#2}	2.364(3)	O3-Cd1-O4 ^{#1}	131.19(7)
Cd1-N1	2.334(3)	03–Cd1–O2	54.50(7)
Cd1-C8 ^{#1}	2.744(3)	O3-Cd1-O5 ^{#1}	77.02(8)
S1-C18	1.780(3)	03-Cd1-01	94.53(10)
S1-C21	1.780(4)	O3-Cd1-N4 ^{#2}	95.91(10)
Bond	Bond Angles	O3-Cd1-N1	142.03(9)
O4 ^{#1} -Cd1-C8 ^{#1}	27.10(7)	O3–Cd1–C8 ^{#1}	104.10(8)
O2-Cd1-O4 ^{#1}	174.07(7)	N4 ^{#2} -Cd1-O4 ^{#1}	89.30(8)
02-Cd1-C8 ^{#1}	158.53(8)	N4 ^{#2} -Cd1-O2	88.27(8)
O5 ^{#1} Cd1O4 ^{#1}	54.21(7)	N4 ^{#2} -Cd1-C8 ^{#1}	93.01(9)
05 ^{#1} Cd1O2	131.34(7)	N1-Cd1-O4 ^{#1}	86.72(8)
O5 ^{#1} -Cd1-N4 ^{#2}	93.32(8)	N1-Cd1-O2	87.69(8)
05 ^{#1} Cd1N1	140.93(8)	N1-Cd1-N4 ^{#2}	85.14(10)
O5 ^{#1} –Cd1–C8 ^{#1}	27.19(8)	N1–Cd1–C8 ^{#1}	113.77(9)
01-Cd1-O4 ^{#1}	85.01(9)		

Symmetry transformations used to generate equivalent atoms: (#1) +X, -1+Y, +Z; (#2) 1.5-X, 0.5-Y, 1-Z; (#3) +X, 1+Y, +Z.

D–H…A [Å]	d(D–H) [Å]	d(H…A) [Å]	d(D…A) [Å]	<(DHA) [°]
N7–H7…O2 ^{#1}	0.86	2.17	2.929(2)	147.6
N6–H6…N4 ^{#2}	0.86	2.12	2.964(2)	165.9
C45–H45…O1 ^{#3}	0.93	2.63	3.547(3)	169.4
C35–H35…N1 ^{#3}	0.93	2.67	3.344(3)	129.5
C36–H36…O4	0.93	2.33	2.919(3)	121.3
С39–Н39…О3	0.93	2.35	2.899(3)	117.7
N3–H3…N5 ^{#4}	0.86	2.11	2.970(2)	173.9
N2–H2…O3	0.86	2.39	3.131(2)	144.7
C8–H8…S2 ^{#5}	0.93	2.92	3.441(2)	117.0
C24–H24…O4 ^{#6}	0.93	2.56	3.464(3)	164.0
C12–H12…O1	0.93	2.31	2.908(3)	121.4
C15–H15…O2	0.93	2.27	2.881(3)	123.1
C22–H22····S2 ^{#7}	0.93	3.01	3.929(3)	168.9

 Table S3. Hydrogen bonding for ligand L^{4-Py}.

Symmetry transformations used to generate equivalent atoms: #1: 1+X, +Y, +Z; #2: 1+X, +Y, 1+Z; #3: 1-X, 1-Y, 1-Z; #4: +X, +Y, -1+Z; #5: -1+X, +Y, +Z; #6: 1-X, 1-Y, -Z; #7: -X, -Y, -Z.

Table S4. Hydrogen bonding for Cd-MOF.

D–H…A [Å]	d(D–H) [Å]	d(H…A) [Å]	d(D…A) [Å]	<(DHA) [°]
01–H1A…08 ^{#1}	0.90	2.05	2.816(4)	142.5
C20–H20…O8	0.94	2.23	2.833(4)	121.4

Symmetry transformations used to generate equivalent atoms: (#1): 1-X, -Y, 1-Z;

Table S5. Fluorescence quantum yields of the L^{4-Py}, H₂nipa and Cd-MOF.

S.No.	Compound	Wavelength λ_{ex} (λ_{em}) [nm]	Fluorescence	Stokes Shift
			Quantum Yield (φ _F)	
1	L ^{4-py}	300(435)	0.25	135
2	H₂nipa	285(436)	0.18	151
3	Cd-MOF	290 (444)	0.40	154

Quantum yield (Φ) is defined as the ratio of the number of photons emitted to the number of photons absorbed. For the measurements of quantum yield of L^{4-py}, co-ligand H₂nipa, and Cd-MOF, the standards used were 2-Aminopyridine in H₂SO₄, naphthalene in cyclohexane, and 9,10-Diphenylanthracene in cyclohexane, respectively. It is important to mention that Cd-MOF exhibits the highest 40.30% (Φ_F = 0.40) of fluorescence quantum yields when excited at 290 nm. Whereas under identical conditions, ligand L^{4-py} and co-ligand H₂nipa show quantum yields of 25.30% (Φ_F = 0.25) and 18.40% (Φ_F = 0.18), when excited at 300 and 285 nm, respectively. ^{S4}

Sr. No.	Nitroanalytes	LOD (µM)	K _{sv} (M ⁻¹)	K _b (M ⁻¹)
1.	2-NA	0.176	1.14×10^{4}	2.62 × 10 ⁻⁴
2.	3-NA	0.120	5.23 × 10 ³	3.00 ×10 ⁻⁴
3.	4-NA	0.170	8.62 × 10 ³	1.06 × 10 ⁻³
4.	2-NP	0.178	1.5 × 10 ³	6.42 × 10 ⁻³
5.	4-NP	0.166	3.09×10^{4}	5.41 × 10 ⁻³
6.	4-NT	0.184	3.09×10^{4}	1.37 × 10 ⁻²
7.	4-NB	0.117	7.58 × 10 ³	4.30 × 10 ⁻³
8.	3-NBA	0.158	3.5 × 10 ³	2.8×10^{-4}
9.	1,3-DNB	0.084	9.21 × 10 ³	1.02×10^{-2}
10.	2,4-DNP	0.080	13.2 × 10 ³	1.4×10^{-2}
11.	2,4,6-TNP	0.101	18.2 × 10 ³	1.2×10^{-2}

•

Table S6. Stern–Volmer (SV) quenching constant and detection limits of all examined analytes.

Table S7. A comparative list of various fluorescent MOFs including **Cd-MOF** that have been used for sensing of various nitroaromatics.

CPs / MOFs	Analytes	Quenching constant (K _{sv} , M ⁻¹)	Limit of detection (µM)	Solvent	Ref.
[Cd(L^{4-Py}) (nipa)(H ₂ O)] _n (Cd-MOF)	4-NP	3.098 × 10 ⁴	0.166	Methanol	In this work
[Cd₃(BPPA)₃(aba)₃]n	4-NP	6.74×10^{4}	34.48 ppb	DMF	S5
[Cd ₂ (HL ¹)(btc)(H ₂ O) ₂].3H ₂ O	4-NP	2.69×10^4	0.575	DMF	S6
Zn(DMA)(TBA)	4-NP	4.39×10^{4}	1.43	Ethanol	S7
[Zn(L ²)(H ₂ O)].H ₂ O	4-NP	1.25 × 104	3.74	Water	S8
${[Zn_3(mtrb)_3(btc)_2].3H_2O}_n$	4-NP	1.276×10^{4}	2.56	Methanol	S9
[Cd(ppvppa)(1,4-NDC)] _n	2,4-DNP/ 4-NP	118 / 15	70 ppm / 120 ppm	Water	S10
${[Zn_2(L^3)(DMF)_3] \cdot 2DMF \cdot 2H_2O}$	2,4-DNP/ 4-NP	2.40×10 ⁴ , 1.52×10 ⁴	0.77 ppm / 1.03 ppm	DMF	S11
(Zn₂(NDC)₂(bpy)·Gx) (G = Guest molecules)	2,4-DNP/ 4-NP	$1.5 \times 10^{-4}/$ 1.06×10^{-4}	0.284/ 0.347	Ethanol	S12
[Cd(AA)(bpa)(OH ₂)] _n	4-NP	5.07 × 10 ⁵		Water	S13
[Zn ₂ (TCPE)(tta) ₂]·2DMF·4H ₂ O·2Me ₂ NH ₂ +	4-NP	1621.97	0.68	DMF	S14
[Cd ₃ (H ₂ O) ₃ (L ⁴)(tib) ₂].5DMA.4H ₂ O	4-NP	1.557×10^4	74	DMF	S15
{[(CH ₃) ₂ NH ₂] ₂ [Cd ₃ (TCPPDA) ₂]·5DMF·8H ₂ O} _n	4-NP	3.25 × 10 ⁵	7.5	DMF	S16
{ $(Me_2NH_2)_{10}[Zn_6L_4(\mu_3O)_2Zn_3]\cdot Gx_n$ (G = Guest molecules) (FJI-C8)	2,4-DNP	5.11×10^{4}	2.86	DMF	S17
[Zn ₄ (Hbpvp) ₂)BTC) ₃ (HCOO)H ₂ O) ₂]·4H ₂ O	2,4-DNP		1.0	Water	S18
${[Zn(L^5)]}\cdot 4H_2O\cdot 2CH_3CN_n$	2,4-DNP/ 4-NP	3.07 × 10 ⁴ / 8.21 × 10 ⁴	8.49/ 4.49 mM	DMF	S19
${(NH_2(CH_3)_2)[Zn_4(ddn)_2(COO)(H_2O)_4] \cdot sol vent}_n$	2,4-DNP	8.93 × 10 ³	1.12 ppm	DMF	S20

Abbreviation: $L^{4-Py} = N, N'$ -(thiobis(4,1-phenylene))diisonicotinamide; H_2 nipa = 5-nitroisophthalic acid; BPPA = bis(4-(pyridine-4-yl)phenyl)amine), $H_2aba = 4,4'$ -azanediyldibenzoic acid, $H_2L^1 = 1-(1H-imidazol-4-yl)-4-(4H-tetrazol-5-bis)$ yl)benzene), H₃btc = 1,3,5-benzenetricarboxylic acid, H₂TBA = 4-(1H-tetrazol-5-yl)-benzoic acid), DMA = Dimethylacetamide, $H_2L^2 = 5-(2 - methylpyridin-4-yl)$ isophthalic acid, mtrb = 1,3-bis(1,2,4- triazole-4ylmethyl)benzene, ppvppa = N-(pyridin-2-yl)-N-(4-(2-(pyridin-4-yl)vinyl)phenyl)pyridin-2-amine, 1,4-H₂NDC = 1,4naphthalenedicarboxylic acid, H_4L^3 = terphenyl-3,3",5,5"-tetracarboxylic acid, NDC = 2,6- naphthalene dicarboxylic acid, bpy = 4,4' bipyridine, G = guest solvent molecules, AA = adipic acid, bpa = 1,2-bis(4- pyridyl)ethane), H₄TCPE = 1H-tetrazole, 1,1,2,2-tetra(4-carboxylphenyl)ethylene, 1H-tta = H_6L^4 = 5,5',5''-((benzene-1,3,5tricarbonyl)tris(azanediyl))triisophthalic acid, tib = 1,3,5-tri(1H-imidazol-1-yl)benzene, H₄TCPPDA = N,N,N',N'-Tetrakis(4-carboxyphenyl)-1,4-phenylenediamine), FJI-C8 (FJI stands for Fujian Institute of Research on the Structure of Matter, C stands for Cao's group, 8 stands for the number of newly synthesized crystals in his group), bpvp = 3,5bis-(2-(pyridin-4-yl)vinyl)pyridine, $H_2L^5 = 5$ -(3,5-Di-pyr-idin-4-yl-[1,2,4]triazol-1-ylmethyl)-isophthalic acid, H_4 ddn=3,5-di(3,5-dicarboxylphenyl)nitrobenzene.

S.No.	Nitro analytes	J(λ)(M ⁻¹ cm ⁻¹ nm ⁴)
1	4-NP	3.3 × 10 ⁸
2	4-NT	4.8×10^{7}
3	2,4-DNP	4.5×10^{7}
4	2-NP	3.5 × 10 ⁷
5	2-NA	5.9 × 10 ⁷
6	4-NA	2.5 × 10 ⁷
7	3-NA	1.6 × 10 ⁷
8	3-NBA	4.2×10^{6}
9	4-NB	3.7 × 10 ⁶
10	2,4,6-TNP	1.9×10^{6}
11	1,3-DNB	1.8×10^{6}

Table S8. Integral Orbital Overlap $J(\lambda)$ values of nitro-analytes.

Calculation of extent of overlapping.

The extent of overlapping of emission spectra of **Cd-MOF** with absorbance spectra of all nitroanalytes compounds has been calculated using formula (1) given below.^{S21}

$$J(\lambda) = \int_0^\infty F_{\mathsf{D}}(\lambda) \, \varepsilon_A(\lambda) \, \lambda^4 \, d \, \lambda....(1)$$

Where $F(\lambda)$ is the corrected fluorescence intensity of the donor (here **Cd-MOF**) in the range of λ to $\lambda + \Delta \lambda$ with total intensity normalized to unity, ε_A is the molar extinction coefficient of the acceptor (here nitroanalytes) at λ in mol⁻¹ cm⁻¹.

References.

- S1. B.-C. Tzeng, T.-Y. Chang and H.-S. Sheu, Chem. Eur. J., 2010, 16, 9990-9993.
- S2. A. Ganguly, B.K. Paul, S. Ghosh, S. Kar and N. Guchhait, *Analyst*, 2013, **138**, 6532-6541.
- S3. S. Pandey, P. Kumar and R. Gupta, *Dalton Trans.*, 2018, **47**, 14686-14695.
- S4. A. M. Brouwer, Standards for photoluminescence quantum yield measurements in solution. *Pure Appl. Chem.*, 2011, **83**, 2213-2228.
- S5. Z. J. Wang, L. Qin, J-Xi. Chen and H.-G. Zheng, *Inorg. Chem.*, 2016, **55**, 10999–11005.

- S6. X.-Z. Guo, S.-S. Chen, W.-D. Li, S.-S. Han, F. Deng, R. Qiao and Y. Zhao, ACS Omega, 2019, 4, 11540-11553.
- S7. X. Zhang, X. Luo, N. Zhang, J. Wu and Y.-Q. Huang, Inorg. Chem. Front., 2017, 4, 1888-1894.
- S8. X.-Y. Guo, F. Zhao, J.-J. Liu, Z.-L. Liu and Y.-Q. Wang, J. Mater. Chem. A, 2017, 5, 20035.
- S9. Y.-Q. Zhang, V. A. Blatov, T.-R. Zheng, C.-H. Yang, L.-L. Qian, K. Li, B.-L. Li and B. Wu, *Dalton Trans.*, 2018, 47, 6189-6198.
- S10. M.-M. Chen, X. Zhou, H.-X. Li, X.-X. Yang and J.-P. Lang, Cryst. Growth Des., 2015, 15, 2753–2760.
- S11. J.-C. Jin, J. Wu, Y.-X. He, B.-H. Li, J.-Q. Liu, R. Prasad, A. Kumar and S. R. Batten, *CrystEngComm*, 2017, 19, 6464-6472.
- S12. N. Kajal, and S. Gautam, Chem. Eng. J. Adv., 2022, 11, 100348.
- S13. N. Goel and N. Kumar, Inorganica Chim. Acta., 2020, 53, 119352.
- S14. X. Zhang, G. Ren, M. Li, W. Yang and Q. Pan, Cryst. Growth Des., 2019, 19, 6308-6314.
- S15. X.-Yu. Sun, X.-D. Zhangb, Z.-H. Xub, Y. Zhaob, Z.-L. Wanga and W.-Y. Sun, *J. Coord. Chem.*, 2020, **73**, 2728-2739.
- S16. J. Ru, Y.-X. Shi, S.-C. Fu, Q. Guo, L.-L. Li and Y.-L. Wang, Inorganica Chim. Acta., 2023, 555, 121574.
- S17. X.-S. Wang, L. Li, D.-Q. Yuan, Y.-B. Huang and R. Cao, J. Hazard. Mater., 2018, 344, 283-290.
- S18. Y.-X. Shi, F.-L. Hu, F.-L. Hu and J.-P. Lang, CrystEngComm, 2015, 17, 9404.
- S19. Z. Xu, M. Su, X. He, B. Zhang, Y. Wang and H. Li, Inorg. Chem. Commun., 2020, 111, 107644.
- S20. A. Ma, J. Wu, Y. Han, F. Chen, B. Li, S. Cai, H. Huang, A. Singh, A. Kumar and J. Liu, *Dalton Trans.*, 2018, 47, 9627.
- S21. J. R. Lakowicz, Principles of Fluorescence spectroscopy, 3rd ed., Springer, Singapore, 2010, 443-472.