A 3D rigid Mn-MOF heterogeneous catalyst for thioether oxidation,

cyanosilylation and Knoevenagel condensation

Han-Fu Liu,^{a,b} Zhi-Rong Hu,^b Tai-Xue Wu, ^b Hong-Mei Hao,^c Hai-Ye Li,^{*b} Fu-Ping Huang^{*b}

Identification code	1
Empirical formula	$C_{18}H_{14}Mn_2N_8O_4$
Formula weight	516.25
Crystal system	trigonal
Space group	<i>R</i> ³
$a/\text{\AA}$	21.6779(8)
$b/{ m \AA}$	21.6779(8)
$c/{ m \AA}$	12.6682(5)
$\alpha/^{\circ}$	90
$eta /^{\circ}$	90
$\gamma^{\prime \circ}$	120
Volume/Å ³	5155.6(4)
Z	9
$ ho_{ m calc} { m g/cm^3}$	1.496
μ/mm^{-1}	1.142
F(000)	2340.0
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	6.51 to 57.518
Index ranges	$-28 \le h \le 24, -27 \le k \le 27, -16 \le l \le 14$
Reflections collected	8753
Independent reflections	2713
$R_{ m int}$	0.0459
Goodness-of-fit on F^2	1.064
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0502, wR_2 = 0.1178$
Final R indexes [all data]	$R_1 = 0.0769, wR_2 = 0.1325$

Table S1 Crystal data and structure refinement for Compound 1

a College of Pharmacy, Guilin Medical University, Guilin 541004, P. R. China.

b State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.

c Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541004, P. R. China.

Corresponding author: lihaiye2010@163.com (H.-Y. Li); huangfp2010@163.com (F.-P. Huang).

Electronic Supplementary Information (ESI) available: CCDC 2381922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/x0xx00000x

Bond Lengths (Å)				
Mn1—O1A	2.112 (3)	Mn1—N2	2.219 (2)	
Mn1—O2	2.125 (3)	Mn1—N3B	2.293 (2)	
Mn1—N1	2.355 (3)	Mn1—N4C	2.432 (3)	
	Bond A	Angles (°)		
O1A—Mn1—O2	95.68 (12)	O2—Mn1—N3B	95.29 (10)	
O1A—Mn1—N1	160.60 (11)	O2—Mn1—N4C	169.41 (10)	
O1A—Mn1—N2	89.14 (11)	N1—Mn1—N4C	89.20 (9)	
O1A—Mn1—N3B	86.88 (11)	N2—Mn1—N1	72.92 (9)	
O1A—Mn1—N4C	87.56 (10)	N2—Mn1—N3B	175.35 (9)	
O2—Mn1—N1	90.98 (11)	N2—Mn1—N4C	102.67 (9)	
O2—Mn1—N2	87.49 (10)	N3B—Mn1—N1	110.67 (9)	
N3B—Mn1—N4C	74.77 (9)			

Table S2 Selected Bond Lengths (Å) and Angles (°) for Compound 1

Symmetry codes: (A) *y*+1/3, -*x*+*y*+2/3, -*z*+2/3; (B) *x*-*y*+1/3, *x*-1/3, -*z*+2/3; (C) -*x*+*y*+1/3, -*x*+2/3, *z*-1/3; (D) -*x*+1, -*y*+1, -*z*+1; (E) -

y+2/3, *x*-*y*+1/3, *z*+1/3.

Fig. S1. IR spectra of Compound 1

Fig. S2. PXRD patterns of 1 and 1'

Fig. S3. SEM images of 1'

Table S3 SHAPE analysis of Mn(II) ion in 1.		
	MnN_4O_2	
Coordination modes		
label	OC-6	
symmetry	Oh	
shape	Octahedron	
	$Distortion(\tau_{min})$	
Calculation results	Mn1 (2.311)	

Table S4 Optimizing the reaction condition of thioether oxidation catalyzed by $[Mn_2(b-6-mpbt) (HCOO)_2]_n$.O

			S Catalyst S				
Entry	Thioanisol e (mmol)	NaClO (mmol)	[Mn ₂ (b-6-mpbt) (HCOO) ₂] _n (mg)	Time (h)	Т (°С)	Solvent	Conv. ^a (%)
1	4.0	8	40 ^b	4	60	DMF	Trace
2	4.0	8	40 ^b	4	60	H_2O	16.53
3	4.0	8	40 ^b	4	60	EtOH	80.25
4	4.0	8	40 ^b	4	60	MeOH	83.34
5	4.0	8	None	4	60	MeOH	9.85
6	4.0	8	10	4	60	MeOH	55.69
7	4.0	8	20	4	60	MeOH	83.25
8	4.0	8	30	4	60	MeOH	92.67
9	4.0	8	40	4	60	MeOH	99.29
10	4.0	8	40	4	50	MeOH	85.54
11	4.0	8	40	4	40	MeOH	62.61
12	4.0	8	40	4	30	MeOH	24.34
13	4.0	8	40	1	60	MeOH	35.83
14	4.0	8	40	2	60	MeOH	62.01
15	4.0	8	40	3	60	MeOH	86.11
16	4.0	4	20	24	60	MeOH	99.32
17	4.0	4	10	24	60	MeOH	93.25
18	4.0	4	5	24	60	MeOH	81.33

a GC-MS measurement was used to determine the conversion rate

b 1 was used as the catalyst.

Fig. S4. 3D porous framework of 1

 Table. S5 The catalytic efficiency of different MOFs for thioether oxidation, cyanosilylation and Knoevenagel condensation.

Catalyst	catalytic reaction types	Yield (%)	Ref.
$\label{eq:mpbt} \begin{split} & \{[Mn_2(b\text{-}6\text{-}\\ mpbt)(HCOO)_2]\text{-}1.5CH_3OH\}_n \end{split}$	S Catalyst S	99.29%	This work

UiO-66	$\bigcup_{MeCN, 27^{\circ}C}^{S} \xrightarrow{UiO-66/H_2O_2}_{S}$	59%	1
UiO-67	$\bigcup_{MeCN, 27^{\circ}C} \overset{O}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\overset{S}{\searrow}}$	51%	1
PPh ₄ [^{SO} ₂ LVO ₂]	$Catalyst \rightarrow Catalyst $	95%	2
$[(TPY-Br)CuCl(DMSO)(H_2O)]_2$ $[(TPY-Br)CuCl]_2$ $[W_{10}O_{32}] \cdot 2DMSO \cdot 4H_2O$	$\bigcup_{i=1}^{S} \underbrace{Catalyst}_{Oxidant} \longrightarrow \bigcup_{i=1}^{O} \underbrace{C_{i}}_{S} + \underbrace{C_{i}}_{S} \underbrace{C_{i}}_{S} + \underbrace{C_{i}}_{S} \underbrace{C_{i}}_{S} + \underbrace{C_{i}}_{S} \underbrace{C_{i}} \underbrace{C_{i}}_{S} \underbrace{C_{i}} \underbrace{C_{i}}_{S} \underbrace{C_{i}} \underbrace{C_{i}}_{S} \underbrace{C_{i}} C$	99.9%	3
$(Hbiz)_{12}[(P_2Co_2Mo^V_4O_8)_2(P_2Mo^V_2O_8)_4]$	$\bigcup_{i \in \mathbb{N}} S_{i} \xrightarrow{Catalyst} O_{i} \xrightarrow{O_{i}} S_{i} \xrightarrow{O_{i}} S_{$	>99%	4
$(Bu_4N)_4[PW_{11}Nb(O_2)O_{39}]$	$ \begin{array}{c} $	91%	5
$\label{eq:mpbt} \begin{array}{c} \{[Mn_2(b\text{-}6\text{-}\\ mpbt)(HCOO)_2]\text{\cdot}1.5CH_3OH\}_n \end{array}$	$H = \frac{CN}{Si} + \frac{CN}{Si} + \frac{Catalyst}{30 \circ C} + \frac{CN}{O} + C$	99.16%	This work
Complex 2a	H + TMSCN Catalyst rt OTMS	99%	6
Ce-4L	$ \begin{array}{c} H \\ H $	68%	7
$ \begin{array}{l} \{(dpdo)[Pr_{2}(H_{2}O)_{9}(dpdo)][Pr(H_{2} \\ O)_{5}]_{2}[Pr(H_{2}O)_{4}]_{2}[V_{10}O_{28}][NiV_{12} \\ O_{38}] \bullet 27H_{2}O\} \end{array} $	$H = \frac{CN}{Si} + \frac{CN}{Si} \xrightarrow{Catalyst} O^{Si}$	99.6%	8
Y/Eu-MOF	$ \begin{array}{c} H \\ \hline \\$	>99%	9
$\{[Zn_2(4\text{-tpom})_2(oxdz)_2] \bullet 4H_2O\}_n$	H Catalyst Solvent-free 25°C, 12h	96%	10
Cu(D-Valmet) • xH ₂ O; x<1	Catalyst Catalyst Solvent-free RT, 24h	97.3%	11
$\label{eq:mpbt} \left\{ [Mn_2(b\text{-}6\text{-}mpbt)(HCOO)_2]\text{-}1.5CH_3OH \right\}_n$	$H \rightarrow NC^{CN} \xrightarrow{Catalyst} H \rightarrow C^{CN}$	97.37%	This work
Fe ₃ O ₄ /cellulose/Co-MOF	$H \rightarrow NC^{CN} \xrightarrow{Catalyst} H \rightarrow C^{CN}$	94%	12

MOF-5	$H \rightarrow NC^{CN} \xrightarrow{Catalyst} C^{CN}$	99%	13
Tb-DCBA	$H \rightarrow NC^{CN} \xrightarrow{Catalyst} V \xrightarrow{C} CN$	>99%	14
JLU-MOF116	$H \rightarrow NC^{CN} \xrightarrow{Catalyst} C^{CN}$	95%	15
JLU-MOF117	$H \rightarrow NC^{CN} \xrightarrow{Catalyst} V \rightarrow CN$	99%	15
Ce-4L	$H \rightarrow NC^{CN} \xrightarrow{Ce-4L} \qquad H \rightarrow CN$	77%	7
$\{ [Co_3(TNBTB)_2(PTP)] \cdot 7DMF \cdot 6 \\ H_2O\}_n $	$H = \frac{H}{C} + NC CN + \frac{NUC-82a}{DMSO} + CN + CN$	99%	16

Fig. S5. PXRD spectra of 1' after 5 runs of thioether oxidation.

Table S6 Control and condition optimization experiments of benzaldehyde silanization reaction catalyzed by 1'

		CN Si I	ilyst	
Entry	Catalyst (mg)	Time (h)	Temperature (°C)	Conv. (%)
1	0	3	30	11.21
2	10	3	30	36.32
3	20	3	30	58.71
4	30	3	30	92.67
5	40	3	30	99.16
6	50	3	30	98.21
7	40	3	20	69.34
8	40	3	10	45.11

Fig. S6. Optimization of catalyst dosage for benzaldehyde silanization reaction

Fig. S7. The conversion of benzaldehyde silanization catalyzed by 1' at different temperatures

Fig. S8. PXRD spectrum of 1' after 5 runs of catalytic silanization reaction.

Table S7 Control and condition optimization experiments of benzaldehyde Knoevenagel condensation reaction catalyzed by 1'

	H	D + NC CN	Catalyst	ç ^{_CN} CN
Entry	Catalyst (mg)	Time (h)	T (°C)	Conv. (%)
1	0	2	30	21.13
2	10	2	30	70.66
3	20	2	30	92.31
4	30	2	30	97.37
5	40	2	30	97.52
6	30	2	10	36.21
7	30	2	20	65.29
8	30	0.5	30	42.35
9	30	1	30	68.44
10	30	1.5	30	86.73
11	30	3	30	97.61
12	30	4	30	97.65

Fig. S9. The relationship between the amount of catalyst and the yield of catalytic conversion in benzaldehyde Knoevenagel condensation reaction.

Fig. S10. The conversion of benzaldehyde Knoevenagel condensation reaction catalyzed by 1' at different temperatures

Fig. S11. PXRD spectrum of 1' after 5 runs of catalytic Knoevenagel condensation reaction.

Fig. S12. Probable mechanism of the thioether oxidation reaction catalyzed by 1'.

Fig. S13. Probable mechanism of the cyanosilylation reaction catalyzed by 1'.

Fig. S14. Probable mechanism of the Knoevenagel condensation reaction catalyzed by 1'.

Squeeze results for 1 is as follows: loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons

_platon_squeeze_void_content

1 0.000 0.000 0.000 9 0''

2	0.333	0.667	0.167	323	71''
3	0.667	0.333	-0.167	322	70''
4	0.000	0.000	0.500	320	70''
5	0.667	0.333	0.333	11	0''
6	0.333	0.667	0.667	11	0''

That is, SQUEEZE gives 211 electrons/unit cell for the voids. If these electrons are all from CH₃OH (16e⁻), each unit cell has $211/16 \approx 13$ CH₃OH molecules, and each formula unit has 1.5 CH₃OH molecules (since Z = 9). So the suitable formula for this compound should be {[Mn₂(L) (HCOO)₂]•1.5CH₃OH}_n

references

1. O. V. Zalomaeva, V. Y. Evtushok, I. D. Ivanchikova, T. S. Glazneva, Y. A. Chesalov, K. P. Larionov, I. Y. Skobelev and O. A. Kholdeeva, *Inorg. Chem.*, 2020, **59**, 10634-10649.

2. C. G. Werncke, C. Limberg, C. Knispel, R. Metzinger and B. Braun, *Chemistry – A European Journal*, 2011, **17**, 2931-2938.

3. Y. Zhang, W. D. Yu, F. Q. Wang, X. Wang, J. Zhou, C. Liu and J. Yan, Chin. J. Chem. 2024, 42, 592-598.

4. X. Liu, N. Xu, X. Liu, Y. Guo and X. Wang, Chem. Commun., 2022, 58, 12236-12239.

5. O. V. Zalomaeva, N. V. Maksimchuk, G. M. Maksimov and O. A. Kholdeeva, *Eur. J. Inorg. Chem.*, 2018, 2019, 410-416.

6. K. Lu, H. Qiu, X. Chen, T. Yuan, F. Xue and M. Ma, J. Mol. Struct., 2024, 1295, 136796.

7. P. Zhao, Y. Liu, C. He and C. Duan, New J. Chem., 2023, 47, 19114-19121

8. H. An, J. Zhang, S. Chang, Y. Hou and Q. Zhu, Inorg. Chem., 2020, 59, 10578-10590.

9. E. Echenique-Errandonea, M. E. López-Vargas, J. M. Pérez, S. Rojas, D. Choquesillo-Lazarte, J. M. Seco, I. Fernández and A. Rodríguez-Diéguez, *Catalysts*, 2022, **12**, 299.

10. A. Chanda and S. K. Mandal, Inorg. Chem., 2024, 63, 5598-5610.

11. Z. Arora, D. I. Eftemie, A. Spinciu, C. Maxim, A. M. Hanganu, M. Tudorache, B. Cojocaru, O. D. Pavel, P.

Granger, M. Andruh and V. I. Pârvulescu, ChemCatChem, 2021, 13, 4634-4644.

12. E. Zare and Z. Rafiee, Appl. Organomet. Chem., 2020, 34: e5516.

13. C. Guo, Y. Zhang, L. Zhang, Y. Zhang and J. Wang, CrystEngComm, 2018, 20, 5327-5331.

14. K. Cai, W. Tan, N. Zhao and H. He, Cryst Growth Des., 2020, 20, 4845-4851.

15. J. Qiao, B. Zhang, L. Zhang and Y. Liu, J. Mater. Chem. A, 2022, 10, 17773-17781.

16. X. Zhang, X. Wang, C. Li, T. Hu and L. Fan, J. Colloid Interface Sci., 2024, 656, 127-136.