Supporting Information

Exploration of One-Dimensional Iron-Based Coordination Polymer for

Enhanced Lithium Storage Capabilities

Jingwei Liu¹, Xiaolong Cheng¹, Shifa Dang¹, Weile Kong², Mengxian

Zheng¹, Lei Zhang¹, Shuangyan Wu^{2*}, Ning Liu^{3*}, Jinchao Cao^{4*}

1. Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China.

2. Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, China.

3. Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

4. Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, Shandong, China.

*Corresponding author. E-mail address: wushuangyan90@syuct.edu.cn (Shuangyan Wu);

Ning Liu (1337199177@qq.com); caojinchao@wqucas.com (Jinchao Cao)

Figure S1. (a) Infrared spectra of Fe-1D, (b) PXRD of Fe-1D.

Figure S2. Fe 2p high-resolution XPS spectrum of Fe-1D.

Figure S3. (a) Charge-discharge profiles at 1000mA g⁻¹, (b) Charge-discharge profiles at

2000mA g⁻¹.

Figure S4. (a) CV curves at different scan rates of Fe-1D, (b) Log (i) vs log (v) plots at specific peak current of Fe-1D, (c-h) Pseudo-capacitance control contribution at 0.1, 0.2, 0.4, 0.6, 0.8, $1.0 \text{ mV} \cdot \text{s}^{-1}$ as a percentage of the total capacity contribution of Fe-1D, (i)

The relative contributions of pseudocapacitive capacities and diffusion-controlled

capacities at various scan rates.

Figure S5. Theoretical lithium storage sites of (a) 2,3-Pyrazinedicarboxylicacid and (b)

Fe-1D.

Figure S6. (a) Density of states (DOS) and (b) Electronic band structure of Fe-1D.

Structure	°9-9 2-9 9-9, 1-9,			း မီးမှုမ်း ၂ မ ွှေးမီးမှုမ်း	90 90 90 90 90 90 90 90 90 90 90 90 90 9	د. د.و ⁶ -و ⁶ - ر6-و ⁶⁻ و-
Molecular formula	C ₆ H ₆ O	C ₇ H ₆ O	$C_7H_6O_2$	C ₈ H ₆ O ₄	C ₇ H ₅ NO ₄	$C_6H_4N_2O_4$
Theoretical number of Li uptake	1	1	2	4	5	6
Theoretical Capacity (mAh g ⁻¹)	285	253	439	646	801	956
LUMO (Hartree)	-0.002	-0.069	-0.057	-0.069	-0.076	-0.099
HOMO (Hartree)	-0.242	-0.257	-0.265	-0.277	-0.279	-0.268
Energy level gap (eV)	6.53	5.11	5.66	5.64	5.52	4.6

Table S1. Calculated theoretical capacities and LUMO/HOMO energy levels of the selected aromatic ligands

1 Hartree = 27.211386230 eV

Empirical formula	$C_{12}H_8FeN_4O_{10}$
Formula weight	424.07
Temperature/K	298
Crystal system	monoclinic
Space group	I2/a
a/Å	14.9219(19)
b/Å	8.4923(7)
c/Å	13.0852(17)
α/°	90
β/°	118.145(17)
γ/°	90
Volume/Å ³	1462.1(4)
Ζ	4
pcalcg/cm ³	1.927
μ/mm-1	1.104
F(000)	856
Radiation	MoKα (λ = 0.71073)
2θ range for data collection/°	5.71 to 52.994
Index ranges	$-17 \le h \le 18, -10 \le k \le 10, -15 \le l \le 16$
Reflections collected	4511
Independent reflections	1515 [R_{int} = 0.0385, R_{sigma} = 0.0701]
Data/restraints/parameters	1515/0/126
Goodness-of-fit on F ²	1.025
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0465, wR_2 = 0.1151$
Final R indexes [all data]	$R_1 = 0.0707, wR_2 = 0.1241$
Largest diff. peak/hole / e Å ⁻³	0.54/-0.53

Table S2. Crystallographic data and refinement parameters

D-Н…А	D-H (Å)	H····A (Å)	D…A (Å)	D-H-A (°)
O(4)-H4…O(5)	0.82	1.69	2.489	166
O(5)-H5A…O(1)	0.85	1.72	2.524	158
O(5)-H5B…N(2)	0.85	1.91	2.755	174

 Table S3. The hydrogen bond parameters

Sample	R_1	R_2	C_1	R _{ct}	C_2	W_{1-R}	W_{1-T}	W _{1-P}
As assembled	4.385	63.3	7.69×10 ⁻⁷	307	2.81×10-6	36.53	0.60	0.37
After 140 cycles	10.04	12.75	6.43×10 ⁻⁷	20.21	2.77×10-5	20.39	0.43	0.37

Table S4. The simulated values for impedance spectra before and after 140 cycles

Cartesian coordinates for H ₂ pyzdc in lithium storage state								
E 1		Coordinates			Coordinates			
Element	Х	Y	Ζ	Element	Х	Y	Ζ	
С	-0.608466	-2.765617	0.209386	Ο	2.985352	0.660865	-0.222401	
С	0.699153	-2.758312	-0.187117	С	-1.611892	0.625924	-0.243653	
Ν	1.420167	-1.570464	-0.255792	Ο	-2.994979	0.462525	-0.101306	
С	0.767202	-0.376939	-0.115026	Ο	-1.314437	2.020576	-0.405093	
С	-0.715961	-0.382383	0.050323	Li	0.385661	2.340653	-0.969262	
Ν	-1.337848	-1.625766	0.423026	Li	2.967953	1.938533	1.003171	
Н	-1.123887	-3.705771	0.384596	Li	-3.120411	2.208651	-0.413433	
Н	1.247454	-3.674345	-0.365935	Li	-0.437502	1.724761	-0.413433	
С	1.563023	0.799907	-0.230478	Li	3.203638	-1.053584	-0.413433	
Ο	1.216778	1.983109	0.632961	Li	-3.132627	-1.198476	-0.413433	

Table S5. Cartesian coordinates for 2,3-Pyrazinedicarboxylicacid lithium storage.

	Cartesian coordinates for Fe-1D in lithium storage state							
Element	Coordina			Elamant	Coordinates			
Element	Х	Y	Ζ	Element	Х	Y	Ζ	
С	-4.267539	0.617647	0.004618	Ο	-3.332715	-2.029725	-0.078487	
С	2.876032	-0.352126	0.096159	С	-5.30412	-0.540792	0.046475	
Ν	1.964415	-1.344018	0.160857	Ο	-5.137745	-1.759744	0.040299	
С	2.449187	-2.602284	0.133645	Ο	-6.577726	-0.079846	0.129339	
С	3.840711	-2.867823	0.042089	С	5.298484	0.524018	-0.068557	
Ν	4.752274	-1.875946	-0.022606	Ο	6.52524	0.479355	-0.150018	
Н	1.711046	-3.419737	0.186068	Ο	4.714157	1.748277	-0.034499	
Н	4.227932	-3.900023	0.020451	Fe	0.068356	-0.154514	0.028234	
С	2.335219	1.089474	0.126361	Li	-1.225114	0.099533	1.066233	
Ο	1.177836	1.499772	0.201739	Li	1.525839	0.181283	-0.914471	
Ο	3.327045	2.012957	0.056575	Li	-0.099004	-0.102382	-1.428999	
С	-2.454845	2.585531	-0.155768	Li	0.255011	0.129689	1.655052	
С	-3.846357	2.851053	-0.064227	Li	-2.617331	-3.778632	-0.119494	
Ν	-4.757974	1.859416	0.000471	Li	0.157802	-2.625928	-0.662981	
С	-4.273202	0.600894	-0.026741	Li	2.611648	3.761864	0.097151	
С	-2.881678	0.335356	-0.118297	Li	-0.330886	2.510181	0.129655	
Ν	-1.970115	1.327232	-0.182992	Li	-4.516662	-3.418516	0.524054	
Н	-1.716687	3.402971	-0.208162	Li	4.869813	3.758316	0.118641	
Н	-4.233577	3.883233	-0.042602	Li	6.812142	-1.608313	0.019293	
С	-2.340875	-1.106247	-0.148517	Li	-6.637758	1.777408	-0.186783	
0	-1.183495	-1.516551	-0.223908					

 Table S6. Cartesian coordinates for Fe-1D lithium storage.

Electrode	Capacity (mAh g ⁻¹)	Current density (mA g ⁻¹)	Cycle number	Voltage (V)	Refs	
materials	1 2 2 2	5 (6)	5	8 ()		
Fe-ZIF@C	719	100	100	0.01-2.5	1	
Fe ₃ O ₄ @C	570	100	60	0.01-3	2	
$[Fe(C_5O_5)(H_2O)_3]_n$ (1D)	521	100	140	0.01-2.4	3	
$Ti_{0.9}Fe_{1.1}O_3$	454.9	100	500	0.01-2.5	4	
Fe ₃ O ₄ /GN (15%)	825	100	100	0.01-3	5	
MIL-88B(Fe)	189	200	100	0.1-3	6	
$Fe_2(SO_4)_3$	540	1000	100	0.01-3	7	
Fe ₃ O ₄ @CTP QDs-2	810	100	200	0.01-3	0	
Fe ₃ O ₄	108	100	200	0.01-3	8	
semi-crystalline Fe-MOF	854	85	100	0.01-3	9	
Fe-1D	833	200	300	0.01-3	this work	

 Table S7. The basic electrochemical properties of the Fe-based anode materials.

Theoretical methods and computational details:

Band structure analysis and the corresponding projected density of states (PDOS) calculations for Fe-1D were conducted using the Vienna Ab initio Simulation Package (VASP).^{10,11} For the electronic structure calculations, the Generalized Gradient Approximation (GGA) in conjunction with the Perdew-Burke-Ernzerhof (PBE) functional¹² was employed. The kinetic energy cut-off was set to 400 eV, and the K-point mesh was configured as 2 x 3 x 2. The optimization process was terminated when both the energy and force criteria converged to 1.0 x 10-5 eV and 0.02 eV/Å, respectively.

Calculations pertaining to HOMO/LUMO and ESP for both H2pyzdc and Fe-1D were executed using Gaussian 16 software.¹³ Geometric optimization and frequency analysis were carried out employing the B3LYP functional, in conjunction with a hybrid basis set: SDD for Co and Ni atoms,¹⁴ and 6-311+G(d)¹⁵ for C, H, N, and O atoms.

References:

[1] J. Nie, Z. Li, G. Shi, J. Wang, S. Yao, "Fe-ZIF@C with Porous Nanostructure as Anode Material for Lithium-Ion Batteries," *Journal of Electronic Materials 50 (2021): 2831-2839*.

[2] J. Wang, M. Gao, H. Pan, et al., "Chemical vapor deposition prepared bi-morphological carbon-coated Fe₃O₄ composites as anode materials for lithium-ion batteries," *Journal of Power Sources 282 (2015): 257-264.*

[3] L. Zhang, X. Zhang, Y. Gui, "One-Dimensional Croconate-Based Fe-CP as a High-Performance Anode Material for Lithium-Ion Batteries," *Polymers 15.18 (2023): 3728*.

[4] J. Yang, J. Hou, M. Xu, et al., "Improved cycle capability of Titanium-doped Fe₂O₃ anode material for Li-ion batteries," *Journal of Alloys and Compounds 722 (2017): 414-419*.

[5] J. Jiao, W. Qiu, L. Chen, et al., "Synthesis of well-defined Fe₃O₄ nanorods/N-doped graphene for lithium-ion batteries," *Nano research 9 (2016): 1256-1266*.

[6] D. Pukazhselvan, CM. Granadeiro, G. Gonçalves, et al., "Comparative analyses of MIL-88B (Fe) and MIL-100 (Fe) metal organic frameworks as active anode materials for Li ion batteries," *Electrochimica Acta 465 (2023): 142989*.

[7] J. Yao, B. Huang, J. Jiang, et al., "Electrochemical performance of Fe₂(SO₄)₃ as a novel anode material for lithium-ion batteries," *Journal of Alloys and Compounds 886 (2021): 161238*.

[8] F. Shi, Q. Liu, C. Zhang, et al., "A facile method to prepare Fe₃O₄@CTP QDs composite as advanced anode material for lithium ion batteries," *Journal of Alloys and Compounds 890 (2022): 161911*.

[9] L. Moutanassim, M. Aqil, S. El. Hankari, et al., "Disordered and defective semicrystalline Fe-MOF as a high-power and high-energy anode material for lithium-ion batteries," *Journal of Energy Storage 93 (2024): 112055*.

[10] G. Kresse, J. Hafner, "Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium," *Physical Review B 49 (1994): 14251*.
[11] G. Kresse, J. Furthmüller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set," *Computational materials science 6 (1996): 15-50*.

[12] J. P. Perdew, K. Burke, M. Ernzerhof, "Generalized gradient approximation made simple," *Physical review letters* 77 (1996): 3865.

[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., "Gaussian 16. Revision C.01 Gaussian Inc.," *Wallingford, CT, USA. 2016.*

[14] C. Lee, W. Yang, R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," *Physical review B 37 (1988): 785*.

[15] D. Andrae, U. Haeussermann, M. Dolg, et al., "Energy-adjusted ab initio pseudopotentials for the second and third row transition elements," *Theoretica chimica acta 77 (1990): 123-141*.