Supporting Information

Sonochemical Synthesis of Zr-based metal-organic cages and their adsorption performance towards Tartrazine

De-Sheng Wei,^a Jian Li,^a Ting-Ting Xu,^a Wan-Yi Lan,^a Nan Lv,^a

Yu-Teng Zhang*a and Shuang-Bao Li*b

^a College of Chemical Engineering, Northeast Electric Power University, Jilin City 132012, PR China. E-mail: zhangyuteng@neepu.edu.cn (Y.-T. Zhang).
^b School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China. E-mail: <u>lishuangbao@jlict.edu.cn</u> (S.-B. Li)

Fig.S1 Comparison of the preparation process for Zr-MOCs based on sonochemical method and

Fig.S2 PXRD under varying synthesis conditions: (a) 150 W, 30 °C, 40 kHz; (b) 75 W, 60 °C, 40 kHz; (c) 75 W, 30 °C, 40 kHz.

Fig.S3 FT-IR under varying synthesis conditions: (a) 150 W, 30 °C, 40 kHz; (b) 75 W, 60 °C, 40 kHz; (c) 75 W, 30 °C, 40 kHz.

Fig.S5 SEM images of ZrT-1 (a-d) and ZrT-1-OH (e-h) under a power of 75 W: (a,b) ZrT-1, 60 °C, 40kHz; (c,d) ZrT-1, 30 °C, 40kHz; (e,f) ZrT-1-OH, 60 °C, 40kHz; (g,h) ZrT-1-OH, 30 °C, 40kHz

Fig.S6 Color change of TAR solution and Zr-MOCs before and after adsorption.

Table.S1 Comparison of adsorption capacity for TAR between synthesized Zr-MOCs and reported materials.

Adsorbent	Q _{max} (mg/g)	pH _{optimun}	C (mg/ L)	T (∘C)	t _{eq} (min)	$\frac{S_{BET}}{(m^2/g)}$	Kinetic model	Isotherm model	Refs.
Porous chitosan sponge	373.7	6.0	400	25	30	1150.0	PSO and Elovich	-	1
Multi-walled carbon nanotubes	85.09	3.0	50	25	60	-	PSO	Langmuir	2
Activated red mud	136.98	8.0	100	20	30	-	PSO	Langmuir	3
Cu-DTO MOF	309.2	2.0	25	50	30	119.6	PSO	Freundlich	4
Chitosan-grafted Polyaniline	584.0	7.2	400	25	120	-	PSO	Freundlich	5
Double-layered hydroxide (ZnCl ₂ , AlCl ₃)	282.48	6.0	40	25	60	-	PSO	Langmuir	6
Co ₃ O ₄ nanoparticles	204.3	4.0	100	40	90	-	PSO	Freundlich	7
UiO-66@PVDF MOF beads	77.51	2.0	40	50	120	360.74	PSO	Langmuir	8
ZrT-1	238.6	3.0	50	25	65	424.2033	PSO	Langmuir	This work
ZrT-1-OH	225.3	3.0	50	25	65	853.7193	PSO	Langmuir	This work

Fig.S7 Curves of pseudo-first-order (a) and pseudo-second-order (b) kinetics of TRA for Zr-MOCs.

Table S2 The equilibrium capacities, pseudo-second-order rate constant, pseudo-second order rateconstant and R2 values of Zr-MOCs for dyes adsorption.

Adsorbent		Pseudo-fir	st-order	Pse	udo-second-orde	er	
Dye							
	$q_{e(exp)}(mg/g)$	\mathbf{K}_1	$q_{e(cal)}(mg/g)$	R ²	K ₂	$q_{e(cal)}(mg/g)$	\mathbb{R}^2
ZrT-1	224.31653	-0.0719	40.45	0.868	-0.00442	226.244	0.999
ZrT-1-OH	210.11212	-0.0972	160.29	0.934	-0.00454	220.26	0.996

Fig.S8 ZrT-1 (a) and ZrT-1-OH (b) fitting by Langmuir isotherm model and Freundlich isotherm model.

	Langmuir isothermal			Freundlich isothermal			
	K _L	q _{max}	R ²	K _F	1/n	R ²	
ZrT-1	5.44	241.9	0.96	175.85	0.1057	0.78	
ZrT-1-OH	8.2	217.7	0.98	172.37	0.0736	0.82	

Table S3 Parameter values for different kinetic models

Fig.S9 Fitting by intra-particle diffusion kinetic models (a) and adsorption thermodynamic models (b).

Table S4 Thermodynamic parameters for the adsorption of TAR using ZrT-1 and ZrT-1-OH.

	ΔG / KJ mol ⁻¹			$\Delta H/KJ \text{ mol}^{-1}$	ΔS / KJ mol ⁻¹ k ⁻¹	
	298K	308K	318K			
ZrT-1	-22.7	-22.1	-21.5	-41.1	-0.06	
ZrT-1-OH	-18.7	-18.5	-18.2	-26.8	-0.03	

Fig.S10 The adsorption capacity of Zr-MOCs for four pollutants.

Fig.S11 FT-IR spectra of ZrT-1 (a) and ZrT-1-OH (b) before and after adsorption, along with XRD patterns (c) for comparison before and after adsorption.

Fig.S12 Adsorption capacity of ZrT-1 (a) and ZrT-1 (a) ZrT-1-OH (b) under different cycles.

Reference

- [S1] V. M. Esquerdo, T. M. Quintana, G. L. Dotto and L. A. A. Pinto, *React. Kinet., Mech. Catal.*, 2015, **116**, 105–117.
- [S2] J. Goscianska and R. Pietrzak, Catal. Today, 2015, 249, 259–264.
- [S3] R. K. Gautam, S. Banerjee, M. A. Sanroman and M. C. Chattopadhyaya, J. Environ. Chem. Eng., 2017, 5, 328–340.
- [S4] I.-G. Bacioiu, L. Stoica, C. Constantin and A.-M. Stanescu, Water, Air, Soil Pollut., 2017, 228, 298.
- [S5] S. Sahnoun and M. Boutahala, Int. J. Biol. Macromol., 2018, 114, 1345–1353.
- [S6] H. Ouassif, E. M. Moujahid, R. Lahkale, R. Sadik, F. Z. Bouragba, E. M. Sabbar and M. Diouri, *Surf. Interfaces*, 2020, 18, 100401.
- [S7] B. Zafar, S. S. Shafqat, M. N. Zafar, S. Haider, S. H. Sumrra, M. Zubair, N. Alwadai, F. H. Alshammari, A. S. Almuslem and M. S. Akhtar, *Mater. Today Commun.*, 2022, 33, 104946.
- [S8] H. Singh, A. Goyal, S. K. Bhardwaj, M. Khatri and N. Bhardwaj, *Mater. Sci. Eng.: B*, 2023, 288, 116165.