Supporting Information

A Comparative Study of Edge-Selective and Face-Specific Growth of PdAg Alloys on Au Nanoplates and Their Applications for Ethanol Oxidation Reaction

Yanpei An,^a Yingying Wang,^{b*} Yuanyuan Min,^c Xiaoyi Guo,^c Yanyun Ma,^d Xian-Sen Tao,^{c,e} Xianhong Li,^e and Yiqun Zheng^{c*}

^a School of Resource & Environment and Safety Engineering, Jining University, Qufu, Shandong
 273155, China

^b Health Management Department, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China.

^c School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong
 273155, China

^d Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123 Jiangsu, China

^e Shandong Sacred Sun Power Sources Co., Ltd

*Corresponding authors: Prof. Dr. Y. Zheng, E-mail: <u>yzheng@jnxy.edu.cn</u>; Prof. Dr. Y.-Y. Wang, <u>hxwyy2005@mail.sdu.edu.cn</u>.

Figure S1. Low-magnified SEM image of Au@PdAg in-plane core-shell nanoplates obtained *via* edge-specific growth (Au@PdAg NPs-E).

Figure S2. Low-magnified SEM image of Au@PdAg core-shell nanoplates obtained *via* face-specific growth (Au@PdAg NPs-F).

Figure S3. SEM images of AuPdAg nanoplates, except that the capping agent was replaced by: a, b) CTAC (200 mM, 1.5 mL)+CTAB (200 mM, 0.5 mL); c, d) CTAC (200 mM, 0.5 mL)+CTAB (200 mM, 1.5 mL), respectively.

Figure S4. a) HAADF-STEM+EDX-STEM image and b) corresponding line-scan profile of a Au@PdAg NP-E.

Figure S5. EDS spectrum of AuPdAg-E NPs. The molar ratio of Au:Pd:Ag was measured to be 10.7:45.0:44.3.

Figure S6. EDS spectrum of AuPdAg-F NPs. The molar ratio of Au:Pd:Ag was measured to be 14.1:60.0:25.9.

Figure S7. CV curves collected in 1 M KOH+1 M ethanol under different scan rates: a) AuPdAg-E NPs/C; b) AuPdAg-F NPs/C; c) Pt/C.

Figure S8. The CV curves of AuPdAg-E NPs/C and AuPdAg-F NPs/C with current density based on the mass of palladium in 1 M KOH with 1 M ethanol solution.

Figure S9. Electrochemical impedance spectra of AuPdAg-E NPs/C, AuPdAg-F NPs/C and Pt/C.

Figure S10. TEM images of a) AuPdAg-E NPs/C and b) AuPdAg-F NPs/C after 250 cycles of

CV testing.

		Diffraction Peak Position (°)					
Sample/Element	Value Type	111	200	220	311	222	
	XRD	38.9	45.3	66.4	79.8	84.0	
AuruAg-E NPS	Theoretical*	39.0	45.4	.4 66.1 .6 66.8	79.6	83.8	
AuDd A o F NDa	XRD	39.2	45.6	66.8	80.5	85.3	
Auf ung-1 1vi s	Theoretical*	39.3	45.8	66.6	80.3	84.6	
Au	JCPDS No. 04-0784	38.2	44.4	64.6	77.5	81.7	
Pd	JCPDS No. 46-1043	40.1	46.7	68.1	82.1	86.6	
Ag	JCPDS No. 04-0836	38.1	44.3	64.4	77.5	81.5	

Table S1. XRD results and theoretical diffraction peak positions of as-prepared AuPdAg NPs.

*The theoretical value was calculated using Vegard's Law.

Samula	Orbital	B. E. Peak	FWHM	relative	element/oxidation	
Sample		(eV)	(eV)	peak area	state	
AuPdAg-E NPs	Ag 3d _{3/2}	373.3	0.8	37.0%	Ag(0)	
		374.2	1.5	4.8%	Ag(I)	
	Ag 3d _{5/2}	367.3	0.8	45.6%	Ag(0)	
		368.3	2.3	12.6%	Ag(I)	
	Pd 3d _{3/2}	339.8	0.82	16.1%	Pd(0)	
		340.5	3.9	42.4%	Pd(II)	
	Pd 3d _{5/2}	334.5	0.78	23.8%	Pd(0)	
		335.3	2.0	17.7%	Pd(II)	
	Au 4f _{5/2}	87.3	0.78	44.0%	Au(0)	
		88.0	1.1	2.3%	Au(I)	
	Au 4f _{7/2}	83.6	0.7	44.5%	Au(0)	
		85.3	2.2	9.2%	Au(I)	
AuPdAg-F NPs	Ag 3d _{3/2}	373.3	0.86	33.6	Ag(0)	
		374.2	1.5	6.9	Ag(I)	
	Ag 3d _{5/2}	367.3	0.89	44.4	Ag(0)	
		368.3	1.9	15.1	Ag(I)	
	Pd 3d _{3/2}	339.8	0.80	17.6	Pd(0)	
		340.6	3.4	37.8	Pd(II)	
	Pd 3d _{5/2}	334.5	0.75	26.7	Pd(0)	
		335.3	1.6	17.9	Pd(II)	
	Au 4f _{5/2}	87.2	0.75	22.5	Au(0)	
		88.2	0.96	7.4	Au(I)	
	Au 4f _{7/2}	83.6	0.70	21.4	Au(0)	
		85.6	3.5	48.8	Au(I)	

 Table S2. XPS data of Au@PdAg NPs-E and Au@PdAg NPs-F.

	EPHO	E _c ^a	En ^b	ECSA	p	Specific	i(t=3000s)
Electrocatalyst	(V <i>vs</i> .	(V vs.	(V vs.	(cm ² mg ⁻	j_r/j_f^b	Activity	(mA cm ⁻
	RHE)	RHE)	RHE)	¹)		(mA cm ⁻²) ^b	²)
AuPdAg-E NPs	0.66	0.34	0.74	78.81	0.63	7.04	0.50
AuPdAg-F NPs	0.66	0.32	0.74	34.16	0.70	6.85	0.33
Pt/C	-	0.41	0.76	309.8	0.79	2.48	0.06

Table S3. Summary of EOR performances of electrocatalysts in the present study.

^a derived from LSV curve at the scan rate of 10 mV/s;

^b derived from CV curve at the scan rate of 50 mV/s.