Supporting Information

Lanthanide-radical complexes deriving from a nitronyl nitroxide ligand with chelating and bridging function: structure and magnetic properties

Yan Zhou, Junfang Xie, Xiaohui Huang, Chaoyi Jin, Yue Ma, Licun Li*

Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

* E-mail: llicun@nankai.edu.cn.

		1 Gd	
Bond distances			
Gd(1)-O(2)	2.384(4)	Gd(2)-O(15)	2.366(4)
Gd(1)-N(8)	2.691(5)	Gd(2)-N(4)	2.698(5)
Gd(1)-O(6)	2.421(4)	Gd(2)-O(13)	2.398(4)
Gd(1)-O(1)	2.403(4)	Gd(2)-O(12)	2.393(4)
Gd(1)-O(5)	2.366(4)	Gd(2)-O(11)	2.395(4)
Gd(1)-O(3)	2.398(4)	Gd(2)-O(14)	2.401(4)
Gd(1)-O(4)	2.404(4)	Gd(2)-O(9)	2.444(4)
Gd(1)-O(7)	2.347(4)	Gd(2)-O(10)	2.355(4)
Gd(1)-N(3)	2.777(5)	Gd(2)-N(7)	2.771(5)
O(15)-N(5)	1.292(6)	N(1)-O(7)	1.289(6)
N(2)-O(8)	1.258(7)	N(46)-O(16)	1.266(7)
Angles			
O(2)-Gd(1)-N(8)	69.08(14)	O(15)-Gd(2)-O(11)	99.10(15)
O(2)-Gd(1)-N(3)	72.45(14)	O(15)-Gd(2)-O(14)	79.91(14)
N(8)-Gd(1)-N(3)	126.79(15)	O(15)-Gd(2)-O(9)	65.86(14)
O(6)-Gd(1)-N(8)	125.40(15)	O(15)-Gd(2)-N(7)	65.11(14)
O(6)-Gd(1)-N(3)	107.57(15)	N(4)-Gd(2)-N(7)	128.09(15)
O(1)-Gd(1)-N(8)	68.77(14)	O(13)-Gd(2)-N(4)	68.48(14)
O(1)-Gd(1)-N(3)	66.07(14)	O(12)-Gd(2)-N(4)	69.77(14)
O(5)-Gd(1)-N(8)	66.34(14)	O(12)-Gd(2)-N(7)	138.21(14)
O(5)-Gd(1)-N(3)	136.00(14)	O(11)-Gd(2)-N(4)	128.51(14)
O(3)-Gd(1)-N(8)	70.10(14)	O(11)-Gd(2)-N(7)	69.65(14)
O(3)-Gd(1)-N(3)	139.51(14)	O(14)-Gd(2)-N(4)	70.34(14)
O(4)-Gd(1)-N(8)	129.06(14)	O(14)-Gd(2)-N(7)	66.33(14)
O(4)-Gd(1)-N(3)	71.54(14)	O(9)-Gd(2)-N(4)	124.06(14)
O(7)-Gd(1)-N(8)	126.66(15)	O(9)-Gd(2)-N(7)	107.78(14)
O(7)-Gd(1)-N(3)	65.92(14)	O(10)-Gd(2)-N(4)	66.97(15)
O(15)-Gd(2)-N(4)	132.35(15)	O(10)-Gd(2)-N(7)	134.88(14)
O(15)-Gd(2)-O(13)	136.94(14)	N(5)-O(15)-Gd(2)	129.4(4)
O(15)-Gd(2)-O(12)	135.90(14)	N(1)-O(7)-Gd(1)	132.6(3)

Table S1. Selected bond distances (\AA) and angles (deg) for complex 1.

		2 Nd	
Bond distances			
Nd(1)-O(2)	2.454(6)	Nd(2)-O(8)	2.403(6)
Nd(1)-O(3)	2.426(6)	Nd(2)-O(12)	2.433(6)
Nd(1)-O(7)	2.419(7)	Nd(2)-O(9)	2.447(5)
Nd(1)-O(4)	2.451(6)	Nd(2)-O(11)	2.451(6)
Nd(1)-O(1)	2.381(6)	Nd(2)-O(10)	2.446(6)
Nd(1)-O(6)	2.429(8)	Nd(2)-O(14)	2.402(6)
Nd(1)-O(5)	2.450(6)	Nd(2)-O(13)	2.470(6)
Nd(1)-N(2)	2.686(7)	Nd(2)-N(6)	2.728(8)
Nd(1)-N(1)	2.792(8)	Nd(2)-N(3)	2.796(8)
O(1)-N(4)	1.291(10)	O(16)-N(5)	1.261(11)
O(8)-N(8)	1.279(10)	O(15)-N(7)	1.248(12)
Angles			
O(2)-Nd(1)-N(1)	65.5(2)	O(8)-Nd(2)-O(12)	98.1(2)
O(3)-Nd(1)-N(2)	69.7(2)	O(8)-Nd(2)-O(9)	81.2(2)
O(3)-Nd(1)-N(1)	72.3(2)	O(8)-Nd(2)-O(11)	136.4(2)
O(7)-Nd(1)-N(2)	66.3(2)	O(8)-Nd(2)-O(10)	136.0(2)
O(7)-Nd(1)-N(1)	135.3(2)	O(8)-Nd(2)-O(13)	66.4(2)
O(4)-Nd(1)-N(2)	128.9(2)	O(8)-Nd(2)-N(6)#1	133.1(2)
O(4)-Nd(1)-N(1)	72.5(2)	O(8)-Nd(2)-N(3)	64.0(2)
O(1)-Nd(1)-O(2)	76.0(2)	O(12)-Nd(2)-N(6)#1	128.7(2)
O(1)-Nd(1)-O(3)	134.2(2)	O(12)-Nd(2)-N(3)	69.6(2)
O(1)-Nd(1)-O(7)	73.7(2)	O(9)-Nd(2)-N(6)#1	70.1(2)
O(1)-Nd(1)-O(4)	105.0(2)	O(9)-Nd(2)-N(3)	66.4(2)
O(1)-Nd(1)-O(6)	69.5(2)	O(11)-Nd(2)-N(6)#1	70.2(2)
O(1)-Nd(1)-O(5)	140.2(2)	O(11)-Nd(2)-N(3)	137.1(2)
O(1)-Nd(1)-N(2)	126.1(2)	O(10)-Nd(2)-N(6)#1	68.4(2)
O(1)-Nd(1)-N(1)	65.1(2)	O(10)-Nd(2)-N(3)	73.5(2)
O(6)-Nd(1)-N(2)	123.9(2)	O(14)-Nd(2)-O(8)	76.0(2)
O(6)-Nd(1)-N(1)	108.3(2)	O(14)-Nd(2)-N(6)#1	66.7(2)
O(5)-Nd(1)-N(2)	70.0(2)	O(14)-Nd(2)-N(3)	134.4(2)
O(5)-Nd(1)-N(1)	139.3(2)	O(13)-Nd(2)-N(6)#1	122.0(2)
N(2)-Nd(1)-N(1)	127.4(2)	O(13)-Nd(2)-N(3)	109.0(2)
N(8)-O(8)-Nd(2)	128.9(6)	N(6)#1-Nd(2)-N(3)	128.8(2)
N(4)-O(1)-Nd(1)	131.9(5)	O(2)-Nd(1)-N(2)	68.9(2)

Table S2. Selected bond distances (Å) and angles (deg) for complex 2.

		3 Dy	
Bond distances			
Dy(1)-O(5)	2.337(8)	Dy(2)-O(20)	2.313(7)
Dy(1)-O(4)	2.368(8)	Dy(2)-O(17)	2.318(7)
Dy(1)-O(2)	2.315(8)	Dy(3)-O(9)	2.352(9)
Dy(1)-O(3)	2.343(7)	Dy(3)-O(11)	2.320(9)
Dy(1)-O(6)	2.293(9)	Dy(3)-O(8)	2.297(8)
Dy(1)-O(1)	2.305(9)	Dy(3)-O(10)	2.328(8)
Dy(1)-O(7)	2.332(9)	Dy(3)-O(13)	2.330(10)
Dy(1)-N(1)	2.604(9)	Dy(3)-N(2)	2.619(9)
Dy(2)-O(19)	2.350(7)	Dy(3)-O(14)	2.312(9)
Dy(2)-O(18)	2.353(7)	Dy(3)-O(12)	2.359(10)
Dy(2)-O(15)	2.322(7)	O(8)-N(7)	1.303(11)
Dy(2)-O(16)	2.331(8)	O(22)-N(8)	1.254(13)
Dy(2)-N(4)	2.543(9)	O(1)-N(5)	1.287(12)
Dy(2)-N(3)	2.570(8)	O(21)-N(6)	1.254(13)
Angles			
O(1)-Dy(1)-O(5)	141.3(3)	O(16)-Dy(2)-N(4)	112.1(3)
O(1)-Dy(1)-O(4)	78.9(3)	O(16)-Dy(2)-N(3)	78.6(3)
O(1)-Dy(1)-O(2)	82.1(3)	N(4)-Dy(2)-N(3)	141.8(3)
O(1)-Dy(1)-O(3)	141.3(3)	N(7)-O(8)-Dy(3)	125.3(7)
O(1)-Dy(1)-O(7)	70.1(3)	O(18)-Dy(2)-N(3)	119.6(3)
O(1)-Dy(1)-N(1)	70.3(3)	O(15)-Dy(2)-N(4)	74.9(3)
O(6)-Dy(1)-O(1)	109.8(4)	O(7)-Dy(1)-N(1)	117.1(3)
O(6)-Dy(1)-N(1)	76.3(3)	O(9)-Dy(3)-N(2)	70.3(3)
O(4)-Dy(1)-N(1)	71.8(3)	O(11)-Dy(3)-N(2)	78.9(3)
O(2)-Dy(1)-N(1)	141.2(3)	O(8)-Dy(3)-O(9)	83.5(3)
O(3)-Dy(1)-N(1)	144.2(3)	O(8)-Dy(3)-O(10)	143.4(3)
O(5)-Dy(1)-N(1)	76.3(3)	O(8)-Dy(3)-O(13)	71.8(3)
N(5)-O(1)-Dy(1)	127.6(7)	O(8)-Dy(3)-N(2)	69.0(3)
O(20)-Dy(2)-N(4)	143.5(2)	O(8)-Dy(3)-O(14)	80.3(3)
O(20)-Dy(2)-N(3)	72.5(3)	O(8)-Dy(3)-O(12)	141.5(4)
O(17)-Dy(2)-N(4)	76.2(3)	O(10)-Dy(3)-N(2)	77.1(3)
O(17)-Dy(2)-N(3)	76.3(3)	O(13)-Dy(3)-N(2)	119.2(3)
O(19)-Dy(2)-N(4)	77.1(3)	O(14)-Dy(3)-N(2)	136.4(3)
O(19)-Dy(2)-N(3)	139.1(3)	O(12)-Dy(3)-N(2)	146.2(3)
O(18)-Dy(2)-N(4)	75.5(3)	O(14)-Dy(3)-O(11)	142.4(3)

Table S3. Selected bond distances (Å) and angles (deg) for complex 3.

Sceme S1. The synthesis of NIT-2Py-3Py radical ligand.

Complex	CSAPR-9	MFF-9	JCSAPR-9	TCTPR-9
1 Gd1	0.505	0.912	0.915	1.413
1 Gd2	0.611	1.079	1.033	1.706
2 Nd1	0.528	0.804	1.071	1.368
2 Nd2	0.724	1.072	1.204	1.750

Table S4. SHAPE analyses for complexes 1–2.

MFF-9: C_s , Muffin; CSAPR-9: C_{4v} , Spherical capped square antiprism; JCSAPR-9: C_{4v} , Capped square antiprism J10; TCTPR-9: D_{3h} , Spherical tricapped trigonal prism.

Complex	SAPR-8	JBTPR-8	BTPR-8	TDD-8
3 Dy1	0.359	2.035	1.904	2.096
3 Dy2	0.394	2.257	2.047	2.143
3 Dy3	0.462	2.006	1.911	2.113

Table S5. SHAPE analysis for complex **3**.

SAPR-8: D_{4d} , Square antiprism; JBTPR-8: C_{2v} , Biaugmented trigonal prism J50; BTPR-8: C_{2v} , Biaugmented trigonal prism; TDD-8: D_{2d} , Triangular dodecahedron.

Fig. S1. The PXRD pattern of complexes 1-3.

Fig. S2. Asymmetric structural unit of **2** (H and F atoms are omitted for clarity) (left); the coordination polyhedra of Nd^{III} ions in **2** (right).

Fig. S3. One-dimensional structure of 2 (H and F atoms are omitted for clarity).

Fig. S4. Crystal packing diagram of 1 (H and F atoms are omitted).

Fig. S5. Crystal packing diagram of 2 (H and F atoms are omitted).

Fig. S6. Crystal packing diagram of 3 (H and F atoms are omitted).

Fig. S7. Magnetization versus applied field curve measured at 2 K for complex 2.

Fig S8. Magnetization versus applied field curve measured at 2 K for complex 3.

Fig. S9. Frequency-dependent ac signals of χ' and χ' under 0 Oe dc field for **2**.

Fig. S10. Variable temperature χ' and χ'' curves for complex 3 under a zero dc field.

Fig. S11. Variable temperature χ' and χ'' curves for complex 3 under 1000 Oe dc field.