SUPPORTING INFORMATION

Structural Analysis and Water Adsorption Properties of Chloranilate Anion–Terpyridine Metal Complexes forming Hydrogen-Bonded Frameworks

Akio Mishima,^{*a} Runa Mori,^a Ken Kanazashi,^a Tomohiko Hamaguchi,^a Ryuta Ishikawa^a and Satoshi Kawata^{*a}

^a Department of Chemistry, Faculty of Science, Fukuoka University Nanakuma, Jonan-ku Fukuoka 814-0180, Japan

*Corresponding authors.

E-mails: akio.mishima@fukuoka-u.ac.jp (A. Mishima); kawata@fukuoka-u.ac.jp (S. Kawata)

	1	Fe-A		Со-А					
Atom1	Atom2		Distance (Å)	Atom1	Atom2		Distance (Å)		
Fe01	N1		1.9869(18)	Co1	N1		2.0932(19)		
Fe01	N2		1.8871(17)	Co1	N2		1.9137(17)		
Fe01	N3		1.9839(19)	Co1	N3		2.097(2)		
Fe01	N4		1.9819(18)	Co1	N4		2.0692(19)		
Fe01	N5		1.8859(16)	Co1	N5		1.8979(17)		
Fe01	N6		1.9808(18)	Co1	N6		2.0663(19)		
Atom1	Atom2	Atom3	Angle (°)	Atom1	Atom2	Atom3	Angle (°)		
N2	Fe01	N4	101.79(7)	N1	Co1	N3	159.21(7)		
N2	Fe01	N3	80.88(7)	N2	Co1	N4	103.02(7)		
N2	Fe01	N1	80.81(7)	N2	Col	N1	79.66(7)		
N2	Fe01	N6	96.56(8)	N2	Col	N6	96.86(7)		
N3	Fe01	N1	161.62(7)	N2	Col	N3	79.66(7)		
N4	Fe01	N3	90.90(7)	N4	Col	N1	91.78(7)		
N4	Fe01	N1	91.16(7)	N4	Col	N3	90.76(7)		
N5	Fe01	N2	177.50(8)	N5	Col	N2	176.88(7)		
N5	Fe01	N4	80.69(7)	N5	Col	N4	79.87(7)		
N5	Fe01	N3	98.84(7)	N5	Col	N1	101.53(7)		
N5	Fe01	N1	99.53(7)	N5	Col	N6	80.25(7)		
N5	Fe01	N6	80.96(7)	N5	Col	N3	99.23(7)		
N6	Fe01	N4	161.64(7)	N6	Col	N4	160.11(7)		
N6	Fe01	N3	91.52(8)	N6	Col	N1	92.23(7)		
N6	Fe01	N1	92.26(8)	N6	Co1	N3	92.36(8)		

Table S1 Selected bond distance (Å) and angle (°) for Fe-A and Co-A.

		Fe-B			Со-В		
Atom1	Atom2		Distance (Å)	Atom1	Atom2		
Fe01	N1		1.9796(16)	Col	N6		
Fe01	N2		1.8882(14)	Co1	N3		
Fe01	N3		1.9804(15)	Co1	N1		
Fe01	N4		1.9798(16)	Co1	N4		
Fe01	N5		1.8882(14)	Co1	N2		
Fe01	N6		1.9854(16)	Co1	N5		
Atom1	Atom2	Atom3	Angle (°)	Atom1	Atom2	Atom3	
N1	Fe01	N3	161.93(6)	N2	Col	N6	
N1	Fe01	N6	91.94(6)	N2	Col	N3	
N1	Fe01	N4	91.05(6)	N2	Col	N1	
N2	Fe01	N3	80.90(6)	N2	Col	N4	
N2	Fe01	N6	98.08(6)	N3	Col	N1	
N2	Fe01	N1	81.07(6)	N4	Col	N3	
N2	Fe01	N4	99.95(6)	N4	Col	N1	
N3	Fe01	N6	91.65(6)	N5	Col	N6	
N4	Fe01	N3	90.99(6)	N5	Col	N3	
N4	Fe01	N6	161.97(6)	N5	Co1	N1	
N5	Fe01	N3	99.87(6)	N5	Co1	N4	
N5	Fe01	N2	178.85(7)	N5	Col	N2	
N5	Fe01	N6	81.06(7)	N6	Col	N3	
N5	Fe01	N1	98.19(6)	N6	Col	N1	
N5	Fe01	N4	80.91(7)	N6	Col	N4	

Table S2 Selected bond distance (Å) and angle (°) for Fe-B and Co-B.

FigS1. PXRD patterns of Fe-A, Co-A and Ni-A.

FigS2. PXRD patterns of Fe-B, Co-B and Ni-B.

Fig.S3 TGA (bule) and DTA (red) curves of Fe-A.

Fig.S4 TGA (bule) and DTA (red) curves of Co-A.

Fig.S5 TGA (bule) and DTA (red) curves of Ni-A.

Fig.S6 TGA (bule) and DTA (red) curves of Fe-B.

Fig.S7 TGA (bule) and DTA (red) curves of Co-B.

Fig.S8 TGA (bule) and DTA (red) curves of Ni-B.

Fig.S9 PXRD patterns of **Fe-A**. Black) simulation from the single crystal, bule) as-synthesis, red) dehydration, green) rehydration.

Fig.S10 PXRD patterns of **Co-A**. Black) simulation from the single crystal, bule) as-synthesis, red) dehydration, green) rehydration.

Fig.S11 PXRD patterns of Ni-A. Black) simulation from the single crystal, bule) as-synthesis, red) dehydration, green) rehydration.

Fig.S12 PXRD patterns of **Fe-B**. Black) simulation from the single crystal, bule) as-synthesis, red) dehydration, green) rehydration.

Fig.S13 PXRD patterns of **Co-B**. Black) simulation from the single crystal, bule) as-synthesis, red) dehydration, green) rehydration.

Fig.S14 PXRD patterns of **Ni-B**. Black) simulation from the single crystal, bule) as-synthesis, red) dehydration, green) rehydration.

Fig. S15 N_2 adsorption isotherms at 77 K for Co–A (blue) and Co–B (green). Filled circles indicate adsorption and open circles indicate desorption.

Fig. S16 Water adsorption isotherms at 298 K for **Fe–A** (yellow), **Co–A** (blue), and **Ni–A** (green). Filled circles indicate adsorption and open circles indicate desorption.

Fig. S17 Water adsorption isotherms at 298 K for **Fe–B** (yellow), **Co–B** (blue), and **Ni–B** (green). Filled circles indicate adsorption and open circles indicate desorption.

Fig. S18 FT-IR Spectra for Fe-A (red), Co-A (blue), and Ni-A (green).

Fig. S19 FT-IR Spectra for Fe–B (red), Co–B (blue), and Ni–B (green).

Fig. S20 Cyclic water adsorption isotherms at 298 K for **Co–B**. Filled circles indicate adsorption and open circles indicate desorption.

Fig. S21 Cyclic water adsorption isotherms represented in logarithmic form at 298 K for **Co–B**. Filled circles indicate adsorption and open circles indicate desorption.