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Figure S1. Conversion of bCC powder to Eu- and Tb-doped apatites at temperatures between 100 °C and 

200 °C for 7 days analyzed by XRD (a, d), FTIR (b, e) and Raman spectroscopy (c, f).

                                                                                        

Figure S2. XRD patterns corresponding to the conversion of bCC powder to Eu- and Tb-doped apatites at 

160°C and 200 °C for 7 days in presence of 20mM Eu3+(a) and 20 mM Tb3+(b), and at 200 ºC in presence 

of 10 and 20 mM Eu3+ (c), and 10  and 20 mM Tb3+.



                 

Figure S3. FTIR spectra corresponding to the conversion of bCC powder to Eu- and Tb-doped apatites at 

160°C and 200 °C for 7 days in presence of 20mM Eu3+(a) and 20 mM Tb3+(b).

             

Figure S4. Raman spectra corresponding to the conversion of bCC powder to Eu- and Tb-doped apatites at 

160°C and 200 °C for 7 days in presence of 20mM Eu3+(a) and 20 mM Tb3+(b).



              

Figure S5. Deconvolution of the FTIR 875 cm-1 band of samples prepared in presence of 10 mM Eu3+ (a) 
and 10 mM Tb3+ (b) into three sub-bands attributed from left to right to A-type (CO3

2- replacing OH-), B-
type (CO3

2- replacing PO4
3-) and labile CO3

2- species located at the surface of the particles.

                    Table S1. Element composition determined by ICP

                   Eu and Tb determined by ICP-MS and Ca and P by ICP-OES

Sample 
(T ºC, Conc 
Ln mM)

Eu
(ppm)

Tb
(ppm)

Ca
(ppm)

P
(ppm)

(Ln+Ca)
/P

Ap-Eu (160,10) 21,57  289,30 132,50 1.72

Ap-Eu (200,10) 26,74  291,00 127,40 1.81
Ap-Eu (160,20) 48,33  273,30 117,40 1.88
Ap-Tb (160,10)  35,32 274,90 130,30 1.68
Ap-Tb (200,10)  20,07 293,20 132,70 1.74
Ap-Tb (160,20)  34,04 257,00 103,20 1.99
Ap (160,0) (Blank)   297,80 114,70 2.00
Ap (200,0) (Blank) 297,20 127,10 1.80



                                    

Figure S6. Uncorrected excitation (dashed lines) and emission (solid lines) spectra of Eu-doped particle 

prepared with 20 mM Eu and at 200ºC using a λexc=230 nm (black line) and λexc=395 nm (blue line). Slit-

widthsexc/em = 10/10 nm, td = 120 µs, tg = 5 ms and voltage detector = 480v.

            

Figure S7. Luminescence decay curve of Eu-doped particles. λexc/em = 395/616 nm, slit-widthsexc/em = 

10/10 nm, and detector voltage = 700 V. Circles correspond to experimental data and lines to the fitting 

equation.



            

Figure S8. Luminescence decay curve of Tb-doped particles. λexc/em = 372/543 nm, slit-widthsexc/em = 

20/20 nm, and detector voltage = 800 V. Circles correspond to experimental data and lines to the fitting 

equation.

Figure S9. Speciation (a,c) in the system calcite/(H2PO4
-/HPO4

2-/PO4
3)/Ln3+ as a function of pH using 10 

mM Ln3+ and saturation index (S.I.) (b, d) using 10 and 20 mM Ln3+ 


