Supplementary Information

Separation of isomers of chiral thiourea derivatives by spontaneous resolution, and rationale of molecular recognition

Astha M. Dwivedi,^a Rajesh G. Gonnade,^b Suban K. Sahoo^c and Ashutosh V. Bedekar^{*,a}

^aDepartment of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India

^bPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India

^cDepartment of Chemistry, S.V. National Institute of Technology (SVNIT), Ichchanath, Surat 395 007, India

Contents

1.	Materials and methods	II
2.	Synthesis and characterization	II
3.	Crystallization experiments	Х
4.	IR Studies	XXI
5.	Thermal analysis	XXII
6.	Computation studies	XXIII
7.	X-ray analysis	XXIX
8.	Referencs	XXXI

Materials and Methods

All the chemical reagents are of analytical grade and are used without further purification. (S)-(1isothiocyanatoethyl)benzene S-3 was prepared using optically pure (S)-1-phenylethan-1-amine and CS₂ in the presence of Et_3N in dry THF as solvent, and characterized by ¹H NMR and IR. Thin Layer Chromatography was performed on silica gel plates quoted on aluminium sheets. Infrared (IR) spectra were recorded as KBr pallets on BRUKER spectrometer. All the ¹H and ¹³C NMR spectra were recorded on BRUKER 400 MHz spectrometer in CDCl₃, using TMS as internal standard. HPLC analysis was performed on JASCO, LC-Net II/ADC. Thermal analysis was performed on DSC-822, Mettler Toledo with Stare software. X-ray intensity data of crystal was carried out on a Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer equipped with Incoatech multilayer mirrors optics. The intensity measurements were carried out with Cu micro-focus sealed tube diffraction sources (CuK_{α} = 1.54178 Å). The X-ray generator was operated at 50 kV and 1.1 mA for Cu radiations. A preliminary set of cell constants and an orientation matrix were calculated from two matrix sets of 40 frames for Cu radiations. Data were collected with ω scan width of 0.5° at different settings of φ and 2θ with a frame time of 15 sec keeping the sample-to-detector distance fixed at 5.00 cm. The X-ray data collection was monitored by APEX3 program (Bruker, 2016).¹All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2016). Using the APEX3 (Bruker) program suite, the structure was solved with the ShelXS-97 (Sheldrick, 2008)² structure solution program, using direct methods. The model was refined with a version of ShelXL-2018/3 (Sheldrick, 2015)³ using Least Squares minimization.

Synthesis and Characterization

Case A:

Synthesis of 1,3-bis((S)-1-phenylethyl)thiourea (S,S-1)

Figure S1. ¹H NMR Spectrum of *S*,*S*-1 (CDCl₃, 400 MHz)

Figure S2. ¹³C NMR Spectrum of *S*,*S*-1 (CDCl₃, 100 MHz)

Figure S3. IR spectrum of *S*,*S*-1

Case B:

Synthesis of 1-((S)-1-phenylethyl)-3-(1-phenylethyl)thiourea (S,S/R-1)

Case C

Synthesis of 1,3-bis(1-phenylethyl)thiourea (1)

Figure S4. ¹H NMR Spectrum *S*,*S*-1 (25%), *R*,*R*-1 (25%), *S*,*R*-1 (25%), *R*,*S*-1 (25%) (CDCl₃, 400 MHz)

Figure S5. ¹³C NMR Spectrum *S*,*S*-1 (25%), *R*,*R*-1 (25%), *S*,*R*-1 (25%), *R*,*S*-1 (25%) (CDCl₃, 100 MHz)

Synthesis of (S)-1-(4-fluorobenzyl)-3-(1-phenylethyl)thiourea (S-4)

Figure S6. ¹H NMR Spectrum of *S*-4 (CDCl₃, 400 MHz)

Figure S7. ¹³C NMR Spectrum of *S*-4 (CDCl₃, 100 MHz)

Figure S8. IR spectrum of S-4

Figure S9. ¹H NMR Spectrum of S-5 (CDCl₃, 400 MHz)

Figure S10. ¹³C NMR Spectrum of *S*-5 (CDCl₃, 100 MHz)

Figure S11. IR spectrum of *S*-5

Crystallization Experiments

Case-A: In a round bottom flask, equal mixture of R,R-1 and S,S-1 (200 – 400 mg) was subjected for crystallization in different solvents (5-7 mL). (HPLC of mixture used for crystallization is shown in Figure S13) The optical purity and crystal yield are mentioned in the table below. In the table, the yield indicates the amount of all the optically pure crystals obtained in each experiment, irrespective of their chiral nature (R,R-1 and S,S-1).

No	Solvent (Yield of	$\#^a$	Ratio of the cr	isomers in ystals # ^b	Optical purity of 1 (in %) ^c	Remarks
	crystals, %)		<i>S</i> , <i>S</i> -1	<i>R</i> , <i>R</i> - 1		
1	Ethyl acetate	Ι	0.421	99.57	<i>R</i> , <i>R</i> -1 (99.07)	d
	(61.0)	II	99.05	0.95	<i>S</i> , <i>S</i> - 1 (98.11)	d
		III	99.68	0.32	<i>S</i> , <i>S</i> - 1 (99.35)	HPLC included (Figure S14)
		IV	1.57	98.43	<i>R</i> , <i>R</i> -1 (96.87)	d
		V	98.15	1.85	<i>S</i> , <i>S</i> - 1 (96.30)	d
		VI	98.40	1.60	<i>S</i> , <i>S</i> - 1 (96.81)	d
		VII	99.68	0.32	<i>S</i> , <i>S</i> -1 (99.37)	d
		VIII	4.36	95.64	<i>R</i> , <i>R</i> -1 (91.28)	d
		IX	89.11	10.89	S,S-1 (78.22)	d
		Х	0.27	99.73	<i>R</i> , <i>R</i> -1 (99.47)	HPLC included (Figure S15)
		XI	97.88	2.12	<i>S</i> , <i>S</i> -1 (95.75)	d
		XII	99.04	0.95	<i>S</i> , <i>S</i> -1 (98.09)	d
		XIII	98.23	1.77	<i>S</i> , <i>S</i> -1 (96.47)	d
		XIV	1.02	98.72	<i>R</i> , <i>R</i> -1 (97.95)	d
2	Acetone	I	13.27	86.73	<i>R</i> , <i>R</i> -1 (73.45)	d
	(19.3)	II	81.12	18.88	<i>S</i> , <i>S</i> -1 (63.32)	d
		III	16.44	83.56	<i>R</i> , <i>R</i> -1 (67.11)	d
		IV	94.21	5.79	<i>R</i> , <i>R</i> -1 (88.43)	HPLC included (Figure S16)
3	Toluene	Ι	99.24	0.76	<i>S,S</i> -1 (98.482)	d
	(52.1)	II	99.46	0.54	<i>S</i> , <i>S</i> - 1 (98.92)	HPLC included (Figure S17)
		III	99.33	0.67	<i>S</i> , <i>S</i> - 1 (98.66)	d
		IV	97.65	2.35	<i>S</i> , <i>S</i> -1 (95.23)	d
		V	0.98	99.02	<i>R</i> , <i>R</i> -1 (98.04)	HPLC included (Figure S18)
		VI	97.73	2.269	S,S-1 (95.46)	d
		VII	99.46	0.533	<i>S</i> , <i>S</i> -1 (98.92)	d
		VIII	9.34	98.66	<i>R</i> , <i>R</i> -1 (97.33)	<i>d</i>
4	Ethanol	I	50.19	49.81	<i>S,S</i> -1 (0.39)	d
	(69.4)	II	50.41	49.59	<i>S</i> , <i>S</i> - 1 (0.83)	d
		III	52.02	47.98	<i>S</i> , <i>S</i> -1 (4.03)	d
		IV	51.05	48.95	S,S-1 (2.11)	HPLC included (Figure S19)
		V	50.03	49.97	<i>S</i> , <i>S</i> -1 (0.05)	d

Table 1: Experimental details of crystallization study for Ca	ase A
---	-------

Experiments conducted with 200-400 mg of mixture of 1; ^{*a*}Number of Crystals analysed, ^{*b*}Determined by Chiral Phase HPLC on Chiralpak IE (10.0 % IPA in hexane; 1.0 mL/min); ^{*c*}Ratio of only *R*,*R*-1 and *S*,*S*-1. ^{*d*}HPLC chart not included.($t_R(S,S-1)=21.3$ min and $t_R(R,R-1)=23.7$ min.)

Figure S12. HPLC of *S*,*S*-**1**:*R*,*R*-**1** (1:1.4); to establish condition.

Figure S13. HPLC of *S*,*S*-1+*R*,*R*-1 subjected for crystallization

Figure S14. HPLC of crystal III obtained in Ethyl acetate (Table 1, # 1III).

Figure S15. HPLC of crystal X obtained in Ethyl acetate (Table 1, # 1X).

Peak Information												
#	Peak Name	CH	tR [min]	Area [µV-sec]	Height (µV)	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	5	19.043	3867583	159817	94.212	94.466	N/A	14107	2.077	1.082	
2	Unknown	5	20.413	237627	9362	5.788	5.534	N/A	14362	N/A	1.084	

Figure S16. HPLC of crystal IV obtained in Acetone (Table 1, # 2IV).

Figure S17. HPLC of crystal II obtained in Toluene (Table 1, # 3II).

Figure S18. HPLC of crystal V obtained in Toluene (Table 1, # 3V).

Figure S19. HPLC of crystal IV obtained in Ethanol (Table 1, #4 IV).

Case-B:

The diastereomeric mixture of S,R-1 and S,S-1 (200 mg) was subjected for crystallization in different solvents (6-7 mL). Equal ratio of isomers obtained in the reaction is confirmed by HPLC (Figure S20)

Figure S20. HPLC of diastereomeric mixture (*S*,*S*-1+*S*,*R*-1) subjected for crystallization

Crystallization of this mixture resulted in two different shapes of crystals; needle shaped crystals were S,S-1, while S,R-1 crystallizes out as flakes. The optical purity and crystal yield are mentioned in the table below.

Figure S21. Images of crystals obtained in Case B; Left: S,S-1, Right: S,R-1

No	Solvent (Yield of	# ^a	Ratio of isomers in the crystals $\#^b$		Optical purity of 1	
	crystals, %)		S,R- 1	<i>S</i> , <i>S</i> -1	(Remarks
1	diisopropyl ether	Ι	4.71	95.29	<i>S</i> , <i>S</i> -1 (90.59)	d
	(48.6)	II	4.33	95.67	<i>S</i> , <i>S</i> -1 (91.33)	HPLC included (Figure S23)
		III	5.33	94.67	<i>S</i> , <i>S</i> -1 (89.34)	^d
		IV	4.97	95.03	<i>S</i> , <i>S</i> - 1 (90.06)	d
		V	5.34	94.66	<i>S</i> , <i>S</i> -1 (89.33)	d
		VI	4.65	95.34	<i>S,S-</i> 1 (90.69)	d
2	dichloromethane	Ι	2.77	97.23	<i>S,S</i> -1 (94.47)	^d
	diisopropylether (92.0)	Π	3.68	96.31	<i>S</i> , <i>S</i> -1 (92.63)	HPLC included (Figure S24)
		III	4.55	95.45	<i>S,S-</i> 1 (89.77)	d
3	Hexane-	Ι	9.73	90.27	<i>S,S</i> -1 (80.54)	d
	dichloromethane	II	5.28	94.72	<i>S</i> , <i>S</i> -1 (89.44)	d
	(74.6)	III	6.30	93.70	<i>S,S</i> -1 (87.40)	HPLC included (Figure S25)
4	Ethanol	Ι	2.40	97.60	<i>S,S</i> -1 (93.03)	HPLC included (Figure S26)
	(65.0%)		10.6	89.33	<i>S</i> , <i>S</i> -1 (72.09)	d
			7			· · · · ·
5	Acetone (88 0%)	Ι	5.79	94.21	<i>S</i> , <i>S</i> - 1 (86.70)	a
	(00.970)	II	6.47	93.53	<i>S</i> , <i>S</i> -1 (84.20)	a
		III	3.37	96.63	<i>S</i> , <i>S</i> -1 (93.26)	HPLC included (Figure S27)
		IV	4.96	95.04	<i>S</i> , <i>S</i> - 1 (90.08)	d

Table 2: Experimental details of crystallization study for Case B

Experiments conducted with 200-400 mg of mixture of 1; ^aNumber of Crystals analysed, ^bDetermined by Chiral Phase HPLC on Chiralcel OD-H (10.0 % IPA in hexane; 1.0 mL/min); ^cRatio of only *R*,*R*-1 and *S*,*S*-1. ^dHPLC chart not included.($t_R(S,R-1)=12.2 \text{ min}, t_R(S,S-1)=14.6 \text{ min}$)

 Peak Information
 Information

Figure S22. HPLC of *S*,*R*-1: *S*,*S*-1 (1.0:0.7) to establish condition.

Figure S23. HPLC of crystal II obtained in diisopropylether (Table 2, #1II).

Figure S24. HPLC of crystal II obtained in dichloromethane-diisopropylether (1:1) (Table 2, #2II).

Figure S25. HPLC of crystal III obtained in Hexane-dichloromethane (1:1) (Table 2, #3III).

Figure S26. HPLC of crystal I obtained in Ethanol (Table 2, #4I).

Paak Name CH IR. [min] Area [Weight] Quantity NTP Resolution Symmetry Factor Warning 1 Unknown 5 11.880 310227 13448 3.368 4.119 N/A 5990 2.968 1.017 2 Unknown 5 11.880 3000627 13558 9.663 7.861 N/A 5610 N/A 1.172	-												
I Unknown 5 11.880 310227 13548 3.368 4.119 N/A 5990 2.968 1.047 2 Unknown 5 13.887 8900862 315358 96.632 95.881 N/A 5610 N/A 1.172	#	Peak Name	СН	tR [min]	Area [µV·sec]	Height (µV)	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
2 Unknown 5 13.887 8900862 315358 96.632 95.881 N/A 5610 N/A 1.172	1	Unknown	5	11.880	310227	13548	3.368	4.119	N/A	5990	2.968	1.047	
	2	Unknown	5	13.887	8900862	315358	96.632	95.881	N/A	5610	N/A	1.172	

Figure S27. HPLC of crystal III obtained in Acetone (Table 2, #5III).

Case-C:

The diastereomeric mixture of *S*,*S*-1 (25%), *R*,*R*-1 (25%), *S*,*R*-1 (25%), *R*,*S*-1 (25%) (80-400 mg) was subjected for crystallization in different solvents (3-4 mL). Ratio of isomers obtained in the reaction is confirmed by HPLC (Figure S28)

No	Solvent (Yield of	# ^a	Ratio of isomers in the crystals # ^b			Optical purity of 1 (in %) ^c	Remarks
	crystals, %)		Meso <i>R,S-</i> 1	Meso <i>R,S-</i> 1 <i>R,R-</i> 1	<i>S</i> , <i>S</i> - 1		
1	Acetone- Hexane (19.0)	Ι	3.7	8.6	87.6	<i>S,S</i> -1 (82.2)	e
		Π	3.4	0.5	96.0	S,S-1 (95.2)	HPLC included (Figure S31)
		III	3.8	5.1	91.1	<i>S</i> , <i>S</i> -1 (87.7)	HPLC included (Figure S32)
		IV	6.5	90.4	3.0	<i>R</i> , <i>R</i> -1 (93.5)	HPLC included (Figure S33)
		V	6.7	84.8	8.4	<i>R</i> , <i>R</i> - 1 (81.9)	^e
2	Toluene (19.3)	Ι	7.2	67.9	24.9	<i>R</i> , <i>R</i> -1 (46.3)	HPLC included (Figure S34)
3	CH ₂ Cl ₂ -	Ι	19.6	51.7	28.6	<i>R</i> , <i>R</i> -1 (28.3)	HPLC included (Figure S35)
	DIP ^{<i>a</i>} (52.1)	II	17.6	51.8	30.6	<i>R</i> , <i>R</i> -1 (25.6)	e
4	MeOH	Ι	19.7	39.4	40.9	<i>R</i> , <i>R</i> - 1 (1.9)	e
	(45.5)	Π	17.6	42.7	39.7	<i>R</i> , <i>R</i> -1 (3.6)	HPLC included (Figure S36)

Table 3: Experimental details of crystallization study for Case C

Experiments conducted with 80-400 mg of mixture of 1; "Number of Crystals analysed, "Determined by Chiral Phase HPLC on Chiralcel OD-H (4.0 % IPA in hexane; 0.8 mL/min); "Ratio of only *R*,*R*-1 and *S*,*S*-1. "Diisopropylether." HPLC chart not included.(($t_R(S,R-1)=36.7 \text{ min}, t_R(R,R-1)=43.6 \text{ min}, t_R(S,S-1)=48.4 \text{ min}$)

Figure S28. HPLC of Crude 1 S,R-1 /R,S-1 (50%) S,S-1 (25%), R,R-1 (25%) before crystallization

Figure S29. HPLC of scalemic crude *R*,*R*-1: *S*,*S*-1 (1.0:2.0), to establish condition.

Figure S30. HPLC of scalemic crude *S*,*R*-1: *S*,*S*-1 (1.0:9.6), to establish condition.

Figure S31. HPLC of crystal II obtained in Acetone-Hexane (1:1) (Table 3, #1II)

Figure S32. HPLC of crystal III obtained in Acetone-Hexane (1:1) (Table 2, #1III)

Figure S33. HPLC of crystal IV obtained in Acetone-Hexane (1:1) (Table 2, #1IV)

Figure S34. HPLC of crystal VI obtained in Toluene (Table 2, #2I)

Figure S35. HPLC of crystal VII obtained in CH₂Cl₂-DIP (Table 3, #3I)

Figure S36. HPLC of crystal X obtained in Methanol (Table 2, #4II)

Crystallization experiments of *S*/*R*-4 and *S*/*R*-5:

Racemic mixture of *S*-4 and *R*-4 (200 mg), subjected to crystallization in Ethyl acetate (6mL), Hexaneethyl acetate (1:1, 6 mL), Hexane-dichloromethane (1:1, 6 mL), toluene (7 mL) resulted in formation of racemic crystals. Crystallization trials for racemic *S*/*R*-**5** in various solvent also lead racemic crystal instead of conglomerate.

IR Study

In the case A, crystallization from mixture of *S*,*S*-1-*R*,*R*-1 isomers showed formation of conglomerates with high enantiomeric excess. This observation is in accordance with the high correlation between the IR transmittance frequencies of enantiopure and racemic samples.⁴ In case B, the tendency of *S*,*S*-1 to crystallize out is higher than that of *S*,*R*-1, in all the solvents tried. This observation is well supported by high correlation between SS and diastereomeric mixture (SS-SR). In the Case C, correlation between the IR frequencies of enantiopure isomer SS or RR and mixture under crystallization (*S*,*S*-1,*R*,*R*-1,*S*,*R*/*R*,*S*-1) is less than the earlier cases which is evident by low crystal yield of *S*,*S*-1.

Discrepancies in the IR spectra are attributed to the interactions between different isomers.

Crystallization experiment	Isomers of 1 under co	Correlation coefficient	
	SS (pure)	RR (pure)	1.0000
Case A	SS, RR (racemic)	RR (pure)	0.9662
	SS, RR (racemic)	SS (pure)	0.9662 (Figure S37)
Casa P	SS,SR (diastereomer)	SS (pure)	0.9683
Case D	SS, SR (diastereomer)	SR (pure meso)	0.9444
Corr C	SS, RR, SR	RR or SS (pure)	0.9395
Case C	SS, RR, SR	SR (pure meso)	0.9399

Table 4. Correlation coefficient of pure and racemic/diastereomeric mixture of 1

IR spectra recorded for pure and racemic thiourea derivatives **4** and **5** are shown in figure S38 and S39. Correlation coefficient for enantiopure - racemic sample of 5 and 7 was found to be **0.7995** and **0.8516** respectively. These values are in agreement with the tendency of molecule to crystallize as racemic crystal instead of conglomerate.

Figure S37. IR spectrum of pure enantiomer (*S*,*S*-1) and racemic sample (*S*,*S*-1 and *R*,*R*-1).

Figure S38. IR spectrum of pure enantiomer (S-4) and racemic sample (S/R-4).

Figure S39. IR spectrum of pure enantiomer (S-5) and racemic sample (S/R-5).

Thermal analysis

Theoretical melting temperature is calculated using Schroder Van Laar equation⁵ (1)

$$\ln x = \frac{\Delta H_{\rm A}^{\rm f}}{R} \left(\frac{1}{T_{\rm A}^{\rm f}} - \frac{1}{T^{\rm f}} \right)$$
(1)

The thermodynamic parameters like free energy of formation ΔG^0_R of racemic compound and entropy of mixing for enantiomeric **1** in the liquid state ΔS^m_l , are calculated from experimentally measured characteristics (melting point T^f and enthalpy of fusion ΔH^f) using equation (2) and (3) respectively.

Figure S40. Experimental (solid line) and theoretical (dotted line) phase diagram of binary mixture of enantiomers (*S*,*S*-1 and *R*,*R*-1).

Computational analysis

Cartesian coordinates and NCI plot of enantiomeric dimer S,S-1-----S,S-1

Figure S41. NCI plot of enantiomeric dimer S,S-1-----S,S-1

Center	Atomic		Atomic	Coordinates	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	16	0	-3.123556	-2.514883	2.211872
2	7	0	-0.833551	-1.939851	0.905728
3	1	0	-0.333851	-1.370043	0.226748
4	7	0	-2.584377	-0.555149	0.438854
5	1	0	-1.927029	-0.126180	-0.208494
6	6	0	-0.067399	-3.009706	1.554457
7	1	0	-0.780587	-3.499262	2.221076
8	6	0	1.051407	-2.420274	2.412743
9	6	0	2.326053	-2.138676	1.900051
10	1	0	2.560826	-2.360958	0.863379
11	6	0	3.315539	-1.576197	2.712814
12	1	0	4.298387	-1.372014	2.296615
13	6	0	3.046900	-1.288993	4.053448
14	1	0	3.818575	-0.860576	4.687194
15	6	0	1.779539	-1.565927	4.575472
16	1	0	1.560619	-1.352335	5.618164
17	6	0	0.792724	-2.125698	3.760959
18	1	0	-0.192900	-2.336146	4.167765
19	6	0	0.401565	-4.031598	0.510072
20	1	0	1.028372	-3.573758	-0.262639
21	1	0	-0.469566	-4.475112	0.019440
22	1	0	0.979289	-4.829674	0.987704
23	6	0	-2.142712	-1.641121	1.136965
24	6	0	-3.985952	-0.143230	0.309058
25	I	0	-4.494946	-0.565079	1.177755
26	6	0	-4.636010	-0.719658	-0.947613
27	6	0	-5.702395	-1.620/35	-0.834674
28	I	0	-6.043321	-1.918668	0.152859
29	6	0	-6.315022	-2.152189	-1.9/3926
30	I	0	-/.138///	-2.852298	-1.800000
22	0	0	-5.804012	-1./91/05	-3.243393
32 22	1	0	-0.550/21	-2.203211	-4.131039
33 34	0	0	-4.790180	-0.897023	-5.570169
34	6	0	4 180822	0.365644	-4.333072
36	1	0	-4.109022	0.305044	-2.230390
37	6	0	-4 077055	1 388501	0 371051
38	1	0	-3 674613	1 752755	1 321424
39	1	0	-5 120261	1.707525	0.287104
40	1	Ő	-3.519489	1.862092	-0.445051
41	16	0	0.174487	0.497410	-1.660145
42	7	0	1.406105	2.222558	0.015323
43	1	0	2.235970	2.743470	0.275129
44	7	0	2.692056	1.429796	-1.697959
45	1	0	3.426454	1.989142	-1.280825
46	6	0	0.215027	2.510355	0.834295
47	1	0	-0.615926	2.049680	0.294647
48	6	0	-0.014636	4.022099	0.858349
49	6	0	0.067550	4.786293	2.028717
50	1	0	0.291730	4.311058	2.977785
51	6	0	-0.148080	6.169431	1.996063
52	1	0	-0.081936	6.744175	2.915490
53	6	0	-0.450293	6.806248	0.792404
54	1	0	-0.621258	7.878531	0.768253
55	6	0	-0.538340	6.051859	-0.383213
56	1	0	-0.781549	6.536035	-1.324762
57	6	0	-0.321535	4.675072	-0.348117
58	l	0	-0.394433	4.093134	-1.263587
59	6	0	0.337068	1.837298	2.204415

60	1	0	1.204048	2.204731	2.764300
61	1	0	0.452320	0.758569	2.079213
62	1	0	-0.560900	2.015467	2.803499
63	6	0	1.482481	1.420571	-1.074414
64	6	0	3.104786	0.572130	-2.819605
65	1	0	2.178512	0.269933	-3.310949
66	6	0	3.825196	-0.687833	-2.346020
67	6	0	3.282062	-1.948936	-2.621943
68	1	0	2.336549	-2.017074	-3.152825
69	6	0	3.935886	-3.115185	-2.211726
70	1	0	3.499432	-4.084510	-2.434844
71	6	0	5.142406	-3.033980	-1.513278
72	1	0	5.650163	-3.938241	-1.190967
73	6	0	5.693110	-1.779835	-1.230400
74	1	0	6.633072	-1.707034	-0.690594
75	6	0	5.039437	-0.618450	-1.646458
76	1	0	5.487765	0.347314	-1.423456
77	6	0	3.943536	1.403020	-3.801039
78	1	0	3.364744	2.254610	-4.171366
79	1	0	4.243893	0.785144	-4.651757
80	1	0	4.859275	1.783130	-3.332621

Cartesian coordinates and NCI plot of racemic dimer S,S-1-----R,R-1

Figure S42. NCI plot of enantiomeric dimer *S*,*S*-1----*R*,*R*-1

Center Number	Atomic Number		Atomic Type	Coordina X Y	tes (Angstroms ZZ
1	16	0	-3.578070	-1.021418	1.601924
2	7	0	-1.186022	-1.332331	0.344135
3	1	0	-0.535265	-0.936021	-0.328922
4	7	0	-2.363655	0.516256	-0.236495
5	1	0	-1.540948	0.701621	-0.802800
6	6	0	-0.648799	-2.535741	1.015452
7	6	0	0.090639	-2.226860	2.318850
8	6	0	1.478876	-2.419487	2.378059
9	1	0	2.007910	-2.775128	1.496514
10	6	0	2.193031	-2.170087	3.554638
11	1	0	3.267177	-2.334815	3.580280
12	6	0	1.524587	-1.716869	4.693905

13	1	0	2.073633	-1.523825	5.611511
14	6	0	0.140386	-1.520775	4.645711
15	1	0	-0.389689	-1.171592	5.527763
16	6	0	-0.572763	-1.777180	3.472417
17	1	0	-1.645944	-1.619111	3.440040
18	6	0	-2.328256	-0.608171	0.542046
19	6	0	-3.482926	1.454194	-0.437674
20	6	0	-4.716168	0.783660	-1.055156
21	6	0	-6.009098	0.961581	-0.550885
22	1	0	-6.165378	1.535443	0.355529
23	6	0	-7.112248	0.383667	-1.187070
24	1	0	-8.105821	0.527062	-0.771297
25	6	0	-6.940584	-0.381308	-2.341712
26	1	Ő	-7.797517	-0.832393	-2.833947
27	6	Ő	-5.653391	-0.563736	-2.856702
28	1	ŏ	-5 503825	-1 156775	-3 754917
29	6	õ	-4 556729	0.017202	-2 219860
30	1	Ő	-3 559607	-0 135491	-2 625316
31	16	0	0.751402	0.642907	-2.023310
32	7	0	2 287751	1 562752	-0.015108
32	1	0	2.207751	1.502752	0.448314
24	1	0	2 228562	0.141647	1 470101
25	1	0	3.326303 4 122872	0.141047	-1.4/0191
26	1	0	4.133672	0.203323	-0.807302
30 27	0	0	1.27/157	2.489505	0.529711
3/	I	0	0.432235	2.417778	-0.158500
38 20	0	0	1.820323	3.91/300	0.400055
39	0	0	2.258948	4.613545	1.600058
40	I	0	2.196419	4.155448	2.581856
41	6	0	2.769741	5.911975	1.487708
42	l	0	3.101536	6.43/2/8	2.378834
43	6	0	2.846514	6.531867	0.239991
44	1	0	3.238345	7.541172	0.153814
45	6	0	2.407384	5.846968	-0.898491
46	1	0	2.454471	6.323822	-1.873413
47	6	0	1.900323	4.552801	-0.784162
48	1	0	1.557960	4.025017	-1.670898
49	6	0	0.825575	2.015862	1.914314
50	1	0	1.659575	1.959772	2.622276
51	1	0	0.384656	1.019223	1.842668
52	1	0	0.074043	2.696338	2.325660
53	6	0	2.183489	0.787954	-1.121469
54	6	0	3.476514	-0.864545	-2.534080
55	1	0	2.653828	-0.677409	-3.225976
56	6	0	3.334117	-2.287616	-1.999473
57	6	0	2.265202	-3.088776	-2.421268
58	1	0	1.534857	-2.680572	-3.114337
59	6	0	2.123953	-4.398969	-1.952604
60	1	0	1.288592	-5.005075	-2.291233
61	6	0	3.050549	-4.924341	-1.049559
62	1	0	2.941518	-5.940521	-0.682376
63	6	Õ	4.120372	-4.132748	-0.619356
64	1	Ő	4.847334	-4.534021	0.081076
65	6	ŏ	4.260077	-2.826869	-1.093372
66	1	õ	5 103783	-2 230412	-0.753283
67	6	0	4 806162	-0.628644	-3 263719
68	1	0	4 831460	0 377658	-3.692506
69	1	ñ	4 974706	-1 357771	-4 070060
70	1	0		-0 740358	-2 592046
70	1	0	-1 620019	-0.740338	1 1/2017
71 70	1	0	-1.039018	-3.704492	1.14201/
14 72	1	0	-2.403/09	2 881102	0.182777
13 74	1	0	-2.13/199	-3.001400	0.103///
/4	1	U	-1.0///09	-4.003803	1.410419

75	1	0	0.120802	-2.867602	0.310138
76	1	0	-3.093638	2.123588	-1.216090
77	6	0	-3.751507	2.336398	0.790340
78	1	0	-4.158261	1.757505	1.620542
79	1	0	-2.812728	2.793978	1.116733
80	1	0	-4.447586	3.141504	0.532520

Cartesian coordinates and NCI plot of meso dimer S,R-1 ----S,R-1

Figure S43. NCI plot of enantiomeric dimer *S*,*R*-1----*S*,*R*-1

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	16	0	-3.5/4651	0.495017	2.175799
2	7	0	-1.201059	-0.541895	1.440650
3	1	0	-0.556952	-0.821039	0.704936
4	7	0	-2.538518	0.087517	-0.290704
5	1	0	-1.772922	-0.294915	-0.840306
6	6	0	-0.726364	-0.698042	2.818920
7	6	0	0.392759	0.294767	3.131414
8	6	0	1.721937	0.068347	2.742446
9	1	0	1.989627	-0.843164	2.215353
10	6	0	2.720688	1.002230	3.030955
11	1	0	3.744434	0.805812	2.724287
12	6	0	2.407436	2.178976	3.717328
13	1	0	3.185845	2.900820	3.948720
14	6	0	1.086793	2.416015	4.108399
15	1	0	0.831762	3.324816	4.647009
16	6	0	0.089209	1.481775	3.815220
17	1	0	-0.938210	1.672094	4.113144
18	6	0	-2.400255	-0.006412	1.064358
19	6	0	-3.755701	0.384855	-1.076586
20	6	0	-4.846523	-0.678890	-0.911418
21	6	0	-6.059161	-0.438224	-0.255333
22	1	0	-6.245989	0.528037	0.198182
23	6	0	-7.028443	-1.440966	-0.156320
24	1	0	-7.960500	-1.235355	0.362747
25	6	0	-6.799497	-2.702554	-0.709303
26	1	0	-7.553326	-3.480821	-0.629670
27	6	0	-5.592434	-2.955229	-1.367759
28	1	0	-5.402811	-3.930571	-1.807595

29	6	0	-4.630772	-1.948692	-1.468674
30	1	0	-3.696914	-2.152486	-1.988770
31	16	0	0.364450	-1.349993	-1.796411
32	7	0	1.729682	0.935584	-2.235148
33	1	0	2.609928	1.413097	-2.387806
34	7	0	2.961658	-0.985718	-2.367254
35	1	0	3.739515	-0.365525	-2.557203
36	6	0	0.553213	1.820732	-2.100676
37	6	0	1.031333	3.165502	-1.566315
38	6	0	0.919900	3.446346	-0.196958
39	1	0	0.474985	2.712172	0.469189
40	6	0	1.375546	4.660514	0.321555
41	1	0	1.275647	4.858891	1.384267
42	6	0	1.955176	5.611343	-0.522526
43	1	Ő	2.307146	6.556980	-0.120475
44	6	õ	2.075057	5.341259	-1.888124
45	1	Ő	2.518951	6.076835	-2.552990
46	6	õ	1.613580	4.127687	-2.405922
47	1	Ő	1 699371	3 942238	-3 473078
48	6	ŏ	1 746418	-0.415820	-2.138976
49	6	õ	3 301715	-2.405033	-2.192914
50	1	õ	2 373804	-2 954072	-2 364468
51	6	Ő	3 785115	-2 720553	-0 779339
52	6	Ő	3 122486	-3 687149	-0.012971
53	1	0	2 245015	-4 181220	-0.421128
54	6	Ő	3 567871	-4.009711	1 272790
55	1	0	3 039861	-4.760610	1.272790
56	6	0	4 682272	-3 363093	1 811490
57	1	0	5.027131	-3.608675	2 811565
58	6	0	5 350125	-2 303007	1.055937
50	1	0	6 218760	-1.886729	1.055757
60	6	0	4 904507	2 078705	0.220000
61	1	0	5 /388/3	-2.078795	-0.229090
62	6	0	1 325608	2 803638	3 265560
63	1	0	3 018068	2 631251	-3.205500
64	1	0	J.576810	3 863027	3 166000
65	1	0	5 258470	2 235702	3 164507
66	1	0	2 208116	-2.233792	-3.104397
67	6	0	-3.398110	1 828027	-2.107785
607	1	0	-4.223700	1.030927	-0.931133
00 60	1	0	-4.300033	2.039233	0.061912
70	1	0	-3.394002	2.313101	-1.105166
70 71		0	-5.039030	2.05/105	-1.035049
71	0	0	-0.349980	-2.105501	5.078995
12	1	0	0.439394	-2.512011	2.404185
13	1	0	0.005820	-2.288091	4.100/45
74	1	0	-1.227702	-2.799393	2.931400
15	1	0	-1.585596	-0.442/89	5.442517
/0	I	0	-0.089898	1.304//0	-1.344853
11	0	U	-0.232259	1.9055/3	-3.41/455
/8	1	0	-0.5/7558	0.909608	-3.706130
/9	1	U	-1.102//4	2.55/408	-3.293821
80	1	0	0.381821	2.303842	-4.230927

RDG (Reduced density gradient) Scatter plot

Figure S44. RDG scatter plot of diasteromeric combinations a) *S*,*S*-**1** ---*S*,*S*-**1** b) *S*,*S*-**1**---*R*,*R*-**1** c) *S*,*R*-**1** ---*S*,*R*-**1**

Diastereomeric combination	Electronic energy (kcal/mol)
(S,S-1) two free molecules	-1465372.62
<i>S,S</i> - 1 <i>S,S</i> - 1	-1465377.77
<i>S,S</i> - 1 <i>R</i> , <i>R</i> - 1	-1465367.65

Table 5. Electronic energies calculated for the diastereomeric combinations:

Single crystal X-ray analysis

S,*R*-**1** ---*S*,*R*-**1**

For the present study of spontaneous resolution a sample of R,R-1 and S,S-1 (exactly 50.00 mg each) was subjected to crystallization from distilled ethyl acetate (6 mL) in a clean small round bottom flask. The solvent was slowly evaporated to get needle shape, colourless crystals. A crystal was picked and subjected to single crystal X-ray diffraction analysis.

-1465373.12

Table 6.	Crystal data	of crystal	# 1III	(Table 1)
----------	--------------	------------	--------	-----------

Crystal Data	# 1III (Table 1) <i>S</i> , <i>S</i> -1	S,R-1 (meso isomer)
Formula	$C_{17}H_{20}N_2S$	$C_{17}H_{20}N_2S$
Molecular weight	284.41	284.41
Crystal Size, mm	0.14× 0.11× 0.05	$0.12 \times 0.11 \times 0.08$
Temp. (K)	100(2)	100(2)
Wavelength (Å)	1.54178	1.54178
Crystal Syst.	trigonal	monoclinic
Space Group	P32	P2 ₁ /c
a (Å)	10.2178(2)	12.9267(11)
b (Å)	10.2178(2)	12.7298(11)
<i>c</i> (Å)	13.0003(4)	9.3576(8)
α (°)	90	90

β(°)	90	90.901(2)
γ(°)	120	90
V/Å ³	1175.43(6)	1539.6(2)
Z	3	4
$D_{\rm calc}/{\rm g~cm}^{-3}$	1.205	1.227
μ/mm^{-1}	1.750	1.782
F(000)	456	608
Ab. Correct.	multi-scan	multi-scan
T _{min} / T _{max}	0.792/0.918	0.664/0.754
$2\theta_{max}$	157.64	145.384
Total reflns.	36394	32594
Unique reflns.	3228	3011
Obs. reflns.	3036	2912
<i>h, k, l</i> (min, max)	(-12, 12),	(-16, 16),
	(-12, 12),	(-15, 15),
	(-16, 16)	(-11, 11)
R _{int} / R _{sig}	0.0565/0.0274	0.0454/0.0206
No. of para.	192	191
R1 [I> 2σ(I)]	0.0277	0.0328
wR2[l> 2σ(l)]	0.0607	0.0828
R1 [all data]	0.0318	0.0336
wR2 [all data]	0.0631	0.0836
goodness-of-fit	1.078	1.071
$\Delta \rho_{max}, \Delta \rho_{min} (e Å^{-3})$	+0.167,	+300,
	-0.181	-0.224
CCDC No.	2402535	2403604

Figure S45. ORTEP diagram of enantiopure crystal S,S-1 (left) and meso isomer crystal S,R-1

References:

- 1 Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- 2 G. M. Sheldrick, *Acta Crystallogr.*,**2008**, *A64*, 112.
- 3 G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3–8.
- 4 A.A. Bredikhin, Z.A. Bredikhina, O.A. Antonovich, D.V. Zakharychev, D.B. Krivolapov. *J.Mol. Struct*. 2017, **1144**, 443.
- 5 A.A. Bredikhin, Z.A. Bredikhina, V.G. Novikova, A.V. Pashagin, D.V. Zakharychev, A.T.Gubaidullin, *Chirality*. 2008, **20**, 1092.