Effect of Coordinated and Lattice Neutral Co-ligands on the Dielectric Properties of Cadmium and Magnesium Based Coordination Polymers

Balendra,^{a,b} Mahboob Ali,^{c,d} Sanyukta^e and Sevi Murugavel^d ^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India ^bDepartment of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi-110021, India.

^cDepartment of Physics, Rajdhani College, University of Delhi, Delhi-110015, India

^dDepartment of Physics and Astrophysics, University of Delhi, Delhi, 110007, India

^eDepartment of Chemistry, Hindu College, University of Delhi, Delhi-110007, India

E-mail: <u>balendra.iitr@gmail.com</u> Tel: +91-8882632779

Fig. S1 Cadmium carboxylate column connected by FBA forming a 2D sheet on ab-plane in

solid 1.

Fig. S2 Crystal structure of 1 viewed on ac-plane showing the linking of cadmium carboxylate column through FBA^{2-} ligands resulting in a 1D square-shaped channel.

Fig. S3 Crystal structure of 1 viewed on bc-plane showing the linking of cadmium carboxylate column through FBA^{2-} ligands and THF molecules resides in 2D square-shaped channel.

Fig. S4 (a) 1D chain structure of Solid 2 viewed along the c axis.

Fig. S5 2D structure of Solid **2** resulting from the C–H···O_{SBA} interaction between the EtOH molecules and oxygens of SBA^{2-} ligands.

	Structure [†]												
	OP-8	HPY	HBP	CU-	SAP	TD	JGB	JETB	JBTP	BTP	JSD-	TT-8	ETB
		-8	Y-8	8	R-8	D-8	F-8	PY-8	R-8	R-8	8		PY-8
Cd1_C	30.5	23.1	10.6	3.68	11.8	9.3	15.7	19.566	13.7	13.6	15.1	4.551	18.98
ShM	18	31	00	6	73	17	22		89	50	07		1

Table S1. Analysis of Cd1(II) coordination geometry using SHAPE.

[†]OP-8: Octagon (D_{8h}); HPY-8: Heptagonal pyramid (C_{7v}); HBPY-8: Hexagonal bipyramid (D_{6h}); CU-8 Cube (O_h); SAPR-8: Square antiprism (D_{4d}); TDD-8: Triangular dodecahedron (D_{2d}); JGBF-8: Johnson gyrobifastigium J26 (D_{2d}); JETBPY-8: Johnson elongated triangular bipyramid J14 (D_{3h}); JBTPR-8: Biaugmented trigonal prism J50 (C_{2v}); BTPR-8: Biaugmented trigonal prism (C_{2v}); JSD-8 Snub diphenoid J84 (D_{2d}); TT-8: Triakis tetrahedron (T_d) ETBPY-8: Elongated trigonal bipyramid (D_{3h})

Table S2. Analysis of Cd2(II) coordination geometry using SHAPE.

	Structure [†]				
	HP-6	PPY-6	OC-6	TPR-6	JPPY-6
Cd2_CShM	30.680	24.187	1.112	12.188	27.678

[†]HP-6: Hexagon (D_{6h}); PPY-6: Pentagonal pyramid (C_{5v}); OC-6: Octahedron (O_h); TPR-6: Trigonal prism (D_{3h}); JPPY-6: Johnson pentagonal pyramid J2 (C_{5v})

Various combination of cadmium salts and V-shaped ligands applied for the synthesis of Solid 1

The reaction between different cadmium salts and 4,4' (hexafluoroisopropylidene)bisbenzoic acid was carried out in various combinations of polar aprotic solvents at different temperature. The composition of cadmium salts (0.30 mmol), H_2FBA ligand (0.15 mmol), and Phen (0.15 mmol) were kept constant. Every solution was 30 minutes magnetically stirred in beaker and were Teflon's sealed off and the synthesis was completed in an 8 ml reactor system. For crystal formation suitable for X-ray diffraction, the reaction was conducted in the temperature range 120-140 °C which was suitable to get the crystalline phase as per suggested by the database analysis. The outcome of the products resulted in a variety of phases, including liquid, powder, and crystalline. Only the data of solid 1 was solved using the single crystal diffraction method. By varying the metal, ligand, and solvent composition, this synthesis screening also raised the possibility of new phases.

Table S3: Outcome of the reactions between cadmium salts, H_2FBA , Phen with DMA, H_2O and THF.

S.No	Metal salt	Solvent/solve	Solution after stirring	Teflon	Temperatu	Result
		nt	about 30 minutes	(size)	re (°C) and	
		combinations			duration	
(1)	$Cd(NO_3)_2 \cdot 4H_2O$	DMA	Yellow colour	8ml	140 °C for 4	Powder
	(0.30 mmol)	(8ml)	homogenous solution		days	
(2)	Cd(NO ₃) ₂ ·4H ₂ O	DMA/H ₂ O	Colourless solution	8ml	140 °C for 4	Powder
	(0.30 mmol)	(4ml/4ml)			days	
(3)	$Cd(NO_3)_2 \cdot 4H_2O$	DMA/EtOH	Colourless homogenous	8ml	140 °C for 4	Block shape
	(0.30 mmol)	(4ml/4ml)	solution		days	colourless crystals
						$[Cd_2(FBA)_2(phen)_2]$
]. DMA ¹
(4)	$Cd(NO_3)_2 \cdot 4H_2O$	DMA/MeOH	Colourless homogenous	8ml	140 °C for 4	Powder
	(0.30 mmol)	(4ml/4ml)	solution		days	
(5)	Cd(NO ₃) ₂ ·4H ₂ O	DMA/THF	Colourless homogenous		140 °C for 4	Needle shape
	(0.30 mmol)	(4ml/4ml)	solution		days	crystal of Solid 1
(6)	$Cd(OAc)_2 \cdot 2H_2O$	DMA	White colour solution	8ml	140 °C for 4	Powder
	(0.30 mmol)	(8ml)			days	
(7)	$Cd(OAc)_2 \cdot 2H_2O$	DMA/H ₂ O	Milky white colour	8ml	140 °C for 4	Powder
	(0.30 mmol)	(4ml/4ml)	solution		days	
(8)	$Cd(OAc)_2 \cdot 2H_2O$	DMA/EtOH	Milky white colour	8ml	140 °C for 4	Colourless very
	(0.30 mmol)	(4ml/4ml)	solution		days	fine crystals
						Very poor
						diffracting
(9)	$Cd(OAc)_2 \cdot 2H_2O$	DMA/MeOH	Milky white colour	8ml	140 °C for 4	Clear solution
	(0.30 mmol)	(4ml/4ml)	solution		days	

	$Cd(OAc)_2 \cdot 2H_2O$	DMA/THF	Milky white colour	8ml	140 °C for 4	Needle shape
	(0.30 mmol)	(4ml/4ml)	solution		days	crystals Poor
						diffracting
(10)	CdCl ₂ ·4H ₂ O	DMA	Colourless homogenous	8ml	140 °C for 4	Powder
, í	(0.30 mmol)	(8ml)	solution		days	
(11)	CdCl ₂ ·4H ₂ O	DMA/H ₂ O	Milky white colour	8ml	140 °C for 4	Powder
, í	(0.30 mmol)	(4ml/4ml)	solution		days	
(12)	CdCl ₂ ·4H ₂ O	DMA/EtOH	Colourless homogenous	8ml	140 °C for 4	Colourless very
	(0.30 mmol)	(4ml/4ml)	solution		days	fine crystals
						Poor diffracting
(13)	CdCl ₂ ·4H ₂ O	DMA/MeOH	Colourless homogenous	8ml	140 °C for 4	Powder
	(0.30 mmol)	(4ml/4ml)	solution		days	
(14)	CdCl ₂ ·4H ₂ O	DMA/THF	Colourless homogenous	8ml	140 °C for 4	Needle shaped
	(0.30 mmol)	(4ml/4ml)	solution		days	crystals; cell
						parameter matched
						with solid 1 but
						could not solved
(15)	$Cd(NO_3)_2 \cdot 4H_2O$	DMA	Colourless homogenous	8ml	120 °C for 4	Powder
	(0.30 mmol)	(8ml)	solution		days	
(16)	$Cd(NO_3)_2 \cdot 4H_2O$	DMA/H ₂ O	Colourless solution	8ml	120 °C for 4	Needle shaped
	(0.30 mmol)	(4ml/4ml)			days	crystals: Poorly
						diffracting
(17)	$Cd(NO_3)_2 \cdot 4H_2O$	DMA/EtOH	White colour solution	8ml	120 °C for 4	Block shaped
	(0.30 mmol)	(4ml/4ml)			days	crystal: Poorly
-						diffracting
(18)	$Cd(NO_3)_2 \cdot 4H_2O$	DMA/MeOH	Milky white colour	8ml	120 °C for 4	Powder
	(0.30 mmol)	(4ml/4ml)	solution		days	
(19)	$Cd(NO_3)_2 \cdot 4H_2O$	DMA/THF	White colour solution	8ml	120 °C for 4	Needle shaped
	(0.30 mmol)	(4ml/4ml)			days	crystal of solid 1
(20)	$Cd(OAc)_2 \cdot 2H_2O$	DMA	White colour solution	8ml	120 °C for 4	Powder
	(0.30 mmol)	(8ml)			days	
(21)	$Cd(OAc)_2 \cdot 2H_2O$	DMA/H ₂ O	Colourless homogenous	8ml	120 °C for 4	Powder
	(0.30 mmol)	(4ml/4ml)	solution		days	
(22)	$Cd(OAc)_2 \cdot 2H_2O$	DMA/EtOH	Colourless homogenous	8ml	120 °C for 4	Colourless very
	(0.30 mmol)	(4ml/4ml)	solution		days	fine crystals
						Very poor
-						diffracting
(23)	$Cd(OAc)_2 \cdot 2H_2O$	DMA/MeOH	Milky white colour	8ml	120 °C for 4	Clear solution
	(0.30 mmol)	(4ml/4ml)	solution		days	
	$Cd(OAc)_2 \cdot 2H_2O$	DMA/THF	Milky white colour	8ml	120 °C for 4	Powder
	(0.30 mmol)	(4ml/4ml)	solution		days	
(24)	$CdCl_2 \cdot 4H_2O$	DMA/EtOH	Colourless homogenous	8ml	120 °C for 4	Powder
(2.5)	(0.30 mmol)	(4ml/4ml)	solution		days	
(25)	$CdCl_2 \cdot 4H_2O$	DMA/MeOH	Colourless homogenous	8ml	120 °C for 4	Powder
	(0.30 mmol)	(4ml/4ml)	solution		days	
(26)	$CdCl_2 \cdot 4H_2O$	DMA/THF	Colourless homogenous	8ml	120 °C for 4	Powder
	(0.30 mmol)	(4ml/4ml)	solution		days	

Outcomes of the reactions

The Phen is incorporated in the structure suggesting it is working as template for the crystallization of solid **1**. The reaction without Phen resulted the powder phase as the end product which couldn't be characterized through single crystals. Solid $[Cd_2(FBA)_2(phen)_2]$.DMA reported by our group was also obtained in the crystalline phase which were confirmed by checking the cell parameters on single crystals diffraction.

Various combination of cadmium salts and SBA ligand applied for the synthesis of solid

2

Magnesium salts and 4,4'-sulfonyldibenzoic acid were reacted in various combinations of polar aprotic solvents at different temperatures. The composition of salts (1 mmol) and ligand H_2SBA (0.50 mmol) were kept constant. Each solution was magnetically agitated in a beaker for 30 minutes before being sealed with Teflon and the synthesis was completed in an 8 ml reactor setup. The reaction was carried out at temperatures ranging from 120 to 130 °C, which were appropriate for obtaining the crystalline phase suggested by the database analysis. The reactions resulted in variety of phases, including liquid, powder, and crystalline. Only the data of new phase solid **2** was solved using the single crystal diffraction method.

S. No	Metal salt	Solvent/sol vent combinatio ns	Solution after stirring about 30 minutes	Teflo n (size)	Temperatu re (°C) and duration	Result
(1)	MgCl ₂ ·4H ₂ O (1 mmol)	DMA (8ml)	Milky white colour solution	8ml	130 °C for 4 days	Powder
(2)	MgCl ₂ ·4H ₂ O (1 mmol)	DMA/H ₂ O (4ml/4ml)	Colourless solution	8ml	130 °C for 4 days	Needle shaped crystals: Poorly diffracting
(3)	MgCl ₂ ·4H ₂ O (1 mmol)	DMA/EtOH (4ml/4ml)	Colourless homogenous solution	8ml	130 °C for 4 days	Needle shaped crystal of Solid 2
(4)	MgCl ₂ ·4H ₂ O (1 mmol)	DMA/MeO H (4ml/4ml)	Colourless homogenous solution	8ml	130 °C for 4 days	Powder
(5)	MgCl ₂ ·4H ₂ O (1 mmol)	DMA/THF (4ml/4ml)	Colourless homogenous solution		130 °C for 4 days	Powder
(6)	Mg(OAc) ₂ ·4H ₂ O (1 mmol)	DMA (8ml)	White colour solution	8ml	130 °C for 4 days	Powder
(7)	Mg(OAc) ₂ ·4H ₂ O (1 mmol)	DMA/H ₂ O (4ml/4ml)	Milky white colour solution	8ml	130 °C for 4 days	Powder
(8)	Mg(OAc) ₂ ·4H ₂ O (1 mmol)	DMA/EtOH (4ml/4ml)	Milky white colour solution	8ml	130 °C for 4 days	Needle shaped crystals; cell parameter matched with Solid 2 but could not solved
(9)	Mg(NO ₃) ₂ ·6H ₂ O (1 mmol)	DMA/MeO H (4ml/4ml)	Milky white colour solution	8ml	130 °C for 4 days	Clear solution
	$Mg(NO_3)_2 \cdot 6H_2O$ (1 mmol)	DMA/THF (4ml/4ml)	Milky white colour solution	8ml	130 °C for 4 days	Powder
(10)	$\begin{array}{c c} Mg(NO_3)_2 \cdot 6H_2O \\ (1 \text{ mmol}) \end{array}$	DMA (8ml)	Colourless homogenous solution	8ml	130 °C for 4 days	Powder
(11)	$\frac{Mg(NO_3)_2 \cdot 6H_2O}{(1 \text{ mmol})}$	DMA/H ₂ O (4ml/4ml)	Milky white colour solution	8ml	130 °C for 4 days	Powder

Table S4: Outcome of the reactions between Magnesium salts, H₂SBA and various solvents.

(12)	Mg(NO ₃) ₂ ·6H ₂ O	DMA/EtOH	Colourless homogenous	8ml	130 °C for 4	Colourless very
	(1 mmol)	(4ml/4ml)	solution		days	fine crystals
						Poor diffracting
(13)	$Mg(NO_3)_2 \cdot 6H_2O$	DMA/MeO	Colourless homogenous	8ml	130 °C for 4	Powder
	(1 mmol)	Н	solution		days	
		(4ml/4ml)				
(14)	$Mg(NO_3)_2 \cdot 6H_2O$	DMA/THF	Colourless homogenous	8ml	130 °C for 4	Powder
	(1 mmol)	(4ml/4ml)	solution		days	
(15)	MgCl ₂ ·4H ₂ O	DMA	Colourless homogenous	8ml	120 °C for 4	Powder
	(1 mmol)	(8ml)	solution		days	
(16)	MgCl ₂ ·4H ₂ O	DMA/H ₂ O	Colourless solution	8ml	120 °C for 4	Needle shaped
	(1 mmol)	(4ml/4ml)			days	crystals: Poorly
						diffracting
(17)	MgCl ₂ ·4H ₂ O	DMA/EtOH	White colour solution	8ml	120 °C for 4	Needle shaped
	(1 mmol)	(4ml/4ml)			days	crystal Solid 2
(18)	MgCl ₂ ·4H ₂ O	DMA/MeO	Milky white colour	8ml	120 °C for 4	Powder
	(1 mmol)	Н	solution		days	
		(4ml/4ml)				
(19)	MgCl ₂ ·4H ₂ O	DMA/THF	White colour solution	8ml	120 °C for 4	Needle shaped
	(1 mmol)	(4ml/4ml)			days	crystal Poorly
						diffracting
(20)	$Mg(OAc)_2 \cdot 4H_2O$	DMA	White colour solution	8ml	120 °C for 4	Powder
	(1 mmol)	(8ml)			days	
(21)	$Mg(OAc)_2 \cdot 4H_2O$	DMA/H ₂ O	Colourless homogenous	8ml	120 °C for 4	Powder
	(1 mmol)	(4ml/4ml)	solution		days	
(22)	$Mg(OAc)_2 \cdot 4H_2O$	DMA/EtOH	Colourless homogenous	8ml	120 °C for 4	Colourless very
	(1 mmol)	(4ml/4ml)	solution		days	fine crystals
						Very poor
						diffracting
(23)	$Mg(OAc)_2 \cdot 4H_2O$	DMA/MeO	Milky white colour	8ml	120 °C for 4	Clear solution
	(1 mmol)	H	solution		days	
-		(4ml/4ml)		<u> </u>	100.000.0	
	$Mg(OAc)_2 \cdot 4H_2O$	DMA/THF	Milky white colour	8ml	120 °C for 4	Powder
	(1 mmol)	(4ml/4ml)	solution		days	
(24)	$Mg(NO_3)_2 \cdot 6H_2O$	DMA/EtOH	Colourless homogenous	8ml	120 °C for 4	Powder
	(1 mmol)	(4ml/4ml)	solution	0.1	days	D 1
(25)	$Mg(NO_3)_2 \cdot 6H_2O$	DMA/MeO	Colourless homogenous	8ml	120 °C for 4	Powder
	(1 mmol)	H H	solution		days	
		(4ml/4ml)				
(26)	$Mg(NO_3)_2 \cdot 6H_2O$	DMA/THF	Colourless homogenous	8ml	120 °C for 4	Powder
	(1 mmol)	(4ml/4ml)	solution		days	

Outcomes of the reactions

The screening of the reactions suggested the temperature 120 °C and 130 °C were the suitable for the aggregation of the molecules in the crystalline phase. The variation in the composition of the ligand and salts resulted mostly the powder form of the product. The solid **2** crystalline phase was obtained when the same concentration of different salts of magnesium were used.

Solid 1.

Solid 2.

Solid 1'.

Frequency, Hz

Solid1

*R*₁=4.29%

Crystal Data and Experimental

Experimental. Single Colorless needle shape-shaped crystals of **Solid1** were used as supplied. A suitable crystal with dimensions $0.32 \times 0.21 \times 0.12 \text{ mm}^3$ was selected and mounted on a Bruker APEX-II CCD diffractometer. The crystal was kept at a steady T = 100(2) K during data collection. The structure was solved with the olex2.solve 1.5 (Bourhis et al., 2015) solution program using iterative methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with XL (Sheldrick, 2008) using full matrix least squares minimisation on F^2 .

Crystal Data. $C_{23}H_{21}CdF_6NO_{5.5}$, $M_r = 625.81$, monoclinic, P2/n (No. 13), a = 7.5048(14) Å, b = 12.3263(19) Å, c = 26.274(5) Å, $\beta = 92.904(5)^\circ$, $\alpha = \gamma = 90^\circ$, $V = 2427.4(8) Å^3$, T = 100(2) K, Z = 4, Z' = 1, $\mu(MoK_{\alpha}) = 0.983$, 36864 reflections measured, 4522 unique ($R_{int} = 0.0968$) which were used in all calculations. The final wR_2 was 0.0893 (all data) and R_1 was 0.0429 (I $\geq 2 \sigma$ (I)).

Compound	Solid1
Formula	$C_{23}H_{21}CdF_6NO_{5.5}$
<i>D_{calc.}</i> / g cm ⁻³	1.712
μ/mm^{-1}	0.983
Formula Weight	625.81
Colour	Colorless
Shape	needle shape-
	shaped
Size/mm ³	0.32×0.21×0.12
T/K	100(2)
Crystal System	monoclinic
Space Group	P2/n
a/Å	7.5048(14)
b/Å	12.3263(19)
c/Å	26.274(5)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	92.904(5)
γ/°	90
V/Å ³	2427.4(8)
Ζ	4
Ζ'	1
Wavelength/Å	0.71073
Radiation type	MoK _α
$\Theta_{min}/^{\circ}$	2.267
$\Theta_{max}/^{\circ}$	25.500
Measured Refl's.	36864
Indep't Refl's	4522
Refl's I≥2 <i>o</i> (I)	3061
R _{int}	0.0968
Parameters	378
Restraints	90
Largest Peak	0.515
Deepest Hole	-0.727
GooF	1.045
wR_2 (all data)	0.0893
wR_2	0.0795
R1 (all data)	0.0838
R_1	0.0429

Structure Quality Indicators

Reflections:	d min (ΜοΚα) 2Θ=51.0°	0.83 ^{Ι/σ(Ι)}	16.4 Rint m=8.38	9.68%	Full 50.5°	99.8
Refinement:	Shift	0.000 Max Peak	0.5 Min Peak	-0.7	GooF	1.045

A Colorless needle shape-shaped-shaped crystal with dimensions $0.32 \times 0.21 \times 0.12$ mm³ was mounted. Data were collected using a Bruker APEX-II CCD diffractometer operating at *T* = 100(2) K.

Data were measured using ϕ and ω scans with MoK_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program Bruker D8 Quest. The maximum resolution that was achieved was Θ = 25.500° (0.83 Å).

The unit cell was refined using SAINT v8.37A (Bruker, 2015) on 917 reflections, 2% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using SAINT v8.37A (Bruker, 2015). The final completeness is 99.80 % out to 25.500° in Θ . No absorption correction was performed. The absorption coefficient μ of this material is 0.983 mm⁻¹ at this wavelength (λ = 0.71073Å) and the minimum and maximum transmissions are 0.780 and 0.888.

The structure was solved and the space group P2/n (# 13) determined by the olex2.solve 1.5 (Bourhis et al., 2015) structure solution program using using iterative methods and refined by full matrix least squares minimisation on F^2 using version 2014/7 of XL (Sheldrick, 2008). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Most hydrogen atom positions were calculated geometrically and refined using the riding model, but some hydrogen atoms were refined freely.

_exptl_absorpt_process_details: SADABS-2016/2 (Bruker,2016/2) was used for absorption correction.*wR*₂(int) was 0.0968 before and 0.0559 after correction.The Ratio of minimum to maximum transmission is 0.9252.The λ /2 correction factor is Not present.

_smtbx_masks_special_details: A solvent mask was calculated and 84 electrons were found in a volume of 336Å³ in 1 void per unit cell. This is consistent with the presence of 1[C4H8O] per Formula Unit which account for 80 electrons per unit cell.

There is a single formula unit in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1. The moiety formula is C21 H17 Cd F6 N O5, 0.5[C4H80].

Data Plots: Diffraction Data

Data Plots: Refinement and Data

Reflection Statistics

Total reflections (after	37885	Unique reflections	4522
filtering)			
Completeness	0.999	Mean I/ σ	17.83
hkl _{max} collected	(8, 16, 35)	hkl _{min} collected	(-10, -16, -34)
hkl _{max} used	(9, 14, 31)	hkl _{min} used	(-9, 0, 0)
Lim d _{max} collected	100.0	Lim d _{min} collected	0.83
d _{max} used	8.98	d _{min} used	0.83
Friedel pairs	7687	Friedel pairs merged	1
Inconsistent equivalents	483	R _{int}	0.0968
R _{sigma}	0.061	Intensity transformed	0
Omitted reflections	6	Omitted by user (OMIT hkl)	0
Multiplicity	(5438, 6538, 5008, 1874, 528,	Maximum multiplicity	21
	86, 11)		
Removed systematic absences	1021	Filtered off (Shel/OMIT)	6376

Atom	Atom	Length/Å
Cd1	01	2.235(3)
Cd1	011	2.235(3)
Cd1	03 ²	2.247(4)
Cd1	O3 ³	2.247(4)
Cd2	024	2.250(3)
Cd2	02	2.250(3)
Cd2	043	2.251(3)
Cd2	045	2.251(3)

Atom	Atom	Length/Å
Cd2	054	2.266(9)
Cd2	05	2.266(9)
Cd2	$05A^4$	2.231(10)
Cd2	05A	2.231(10)
04	Cd2 ⁶	2.251(3)
03	Cd1 ⁷	2.247(4)

¹3/2-x,+y,1/2-z; ²1+x,-1+y,+z; ³1/2-x,-1+y,1/2-z; ⁴1/2-x,+y,1/2-z; ⁵+x,-1+y,+z; ⁶+x,1+y,+z; ⁷-1+x,1+y,+z

Table S6: Selected Bond Angles in ° for Solid1.

Atom	Atom	Atom	Angle/°
01	Cd1	011	100.92(18)
01	Cd1	03 ²	86.28(13)
01	Cd1	O3 ³	157.22(13)
01 ¹	Cd1	03 ³	86.28(13)
01 ¹	Cd1	03 ²	157.22(13)
03 ³	Cd1	03 ²	95.38(18)
02	Cd2	024	92.47(16)
02	Cd2	045	166.73(14)
02	Cd2	043	90.31(11)
024	Cd2	043	166.73(14)
024	Cd2	045	90.31(11)
024	Cd2	054	102.5(3)
02	Cd2	05	102.5(3)
024	Cd2	05	80.2(5)
02	Cd2	054	80.2(5)
045	Cd2	0 4 ³	89.93(19)
04 ³	Cd2	05^{4}	90.7(3)
045	Cd2	05^{4}	86.6(5)
045	Cd2	05	90.8(3)
04 ³	Cd2	05	86.6(5)
054	Cd2	05	176.2(9)
05A	Cd2	024	84.2(6)
05A4	Cd2	02	84.2(6)
05A	Cd2	02	92.6(4)
05A4	Cd2	024	92.6(4)
05A4	Cd2	0 4 ³	100.6(4)
05A	Cd2	043	82.7(6)
05A4	Cd2	045	82.7(6)
05A	Cd2	045	100.6(4)
05A4	Cd2	05A	175.5(11)

¹3/2-x,+y,1/2-z; ²1+x,-1+y,+z; ³1/2-x,-1+y,1/2-z; ⁴1/2-x,+y,1/2-z; ⁵+x,-1+y,+z; ⁶+x,1+y,+z; ⁷-1+x,1+y,+z

Solid2

*R*₁=4.98%

Crystal Data and Experimental

Experimental. Single Colourless needle-shaped crystals of **Solid2** were used as supplied. A suitable crystal with dimensions $0.30 \times 0.20 \times 0.10 \text{ mm}^3$ was selected and mounted on a Bruker APEX-II CCD diffractometer. The crystal was kept at a steady T = 100 K during data collection. The structure was solved with the olex2.solve 1.5 (Bourhis et al., 2015) solution program using iterative methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with XL (Sheldrick, 2008) using full matrix least squares minimisation on F^2 .

Crystal Data. $C_{36}H_{43}Mg_3NO_{19}S_2$, $M_r = 930.76$, monoclinic, C2/c (No. 15), a = 25.095(16) Å, b = 6.440(4) Å, c = 28.376(18) Å, $\beta = 114.671(18)^\circ$, $\alpha = \gamma = 90^\circ$, V = 4168(5) Å³, T = 100 K, Z = 4, Z' = 0.5, μ (MoK $_{\alpha}$) = 0.253, 7133 reflections measured, 3231 unique ($R_{int} = 0.0991$) which were used in all calculations. The final wR_2 was 0.1356 (all data) and R_1 was 0.0498 (I≥2 σ (I)).

Compound	Solid2		
Formula	$C_{36}H_{43}Mg_3NO_{19}S_2$		
<i>D_{calc.}</i> / g cm ⁻³	1.483		
μ/mm^{-1}	0.253		
Formula Weight	930.76		
Colour	Colorless		
Shape	needle-shaped		
Size/mm ³	0.30×0.20×0.10		
T/K	100		
Crystal System	monoclinic		
Space Group	C2/c		
a/Å	25.095(16)		
b/Å	6.440(4)		
c/Å	28.376(18)		
$\alpha/^{\circ}$	90		
β/°	114.671(18)		
γ/°	90		
V/Å ³	4168(5)		
Z	4		
Ζ'	0.5		
Wavelength/Å	0.71073		
Radiation type	MoK _α		
$\Theta_{min}/^{\circ}$	2.836		
$\Theta_{max}/^{\circ}$	23.995		
Measured Refl's.	7133		
Indep't Refl's	3231		
Refl's I≥2 σ(I)	2564		
R _{int}	0.0991		
Parameters	257		
Restraints	0		
Largest Peak	0.340		
Deepest Hole	-0.581		
GooF	1.041		
wR ₂ (all data)	0.1356		
wR ₂	0.1262		
R_1 (all data)	0.0659		
R_1	0.0498		

Structure Quality Indicators

Reflections:	d min (ΜοΚα) 2Θ=48.0°	0.87 ^{Ι/σ(Ι)}	14.2 Rint m=2.35	9.91% Full 48.0°	98.7
Refinement:		Max Peak	0.3 ^{Min Peak}	-0.6 GooF	1.041

A Colourless needle-shaped-shaped crystal with dimensions $0.30 \times 0.20 \times 0.10$ mm³ was mounted. Data were collected using a Bruker APEX-II CCD diffractometer operating at *T* = 100 K.

Data were measured using ϕ and ω scans with MoK_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program Bruker D8 Quest. The maximum resolution that was achieved was Θ = 23.995° (0.87 Å).

The unit cell was refined using SAINT v8.37A (Bruker, 2015) on 3358 reflections, 47% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using SAINT v8.37A (Bruker, 2015). The final completeness is 98.60 % out to 23.995° in Θ . A multi-scan absorption correction was performed. The absorption coefficient μ of this material is 0.253 mm⁻¹ at this wavelength (λ = 0.71073Å) and the minimum and maximum transmissions are 0 and 0.

The structure was solved and the space group C2/c (# 15) determined by the olex2.solve 1.5 (Bourhis et al., 2015) structure solution program using using iterative methods and refined by full matrix least squares minimisation on F^2 using version 2014/7 of XL (Sheldrick, 2008). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Most hydrogen atom positions were calculated geometrically and refined using the riding model, but some hydrogen atoms were refined freely.

_smtbx_masks_special_details: A solvent mask was calculated and 196 electrons were found in a volume of 752Å³ in 1 void per unit cell. This is consistent with the presence of 1[C4H9NO] per formula unit which account for 192 electrons per unit cell.

The value of Z' is 0.5. This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms. The moiety formula is C32 H34 Mg3 O18 S2, 1[C4H9NO].

Data Plots: Diffraction Data

Data Plots: Refinement and Data

Reflection Statistics

Total reflections (after	7581	Unique reflections	3231
filtering)			
Completeness	0.987	Mean I/ σ	11.4
hkl _{max} collected	(28, 7, 32)	hkl _{min} collected	(-23, -7, -32)
hkl _{max} used	(26, 7, 32)	hkl _{min} used	(-28, 0, 0)
Lim d _{max} collected	100.0	Lim d _{min} collected	0.84
d _{max} used	9.12	d _{min} used	0.87
Friedel pairs	1448	Friedel pairs merged	1
Inconsistent equivalents	263	R _{int}	0.0991
R _{sigma}	0.0707	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	0
Multiplicity	(6853, 364)	Maximum multiplicity	6
Removed systematic absences	448	Filtered off (Shel/OMIT)	0

Atom	Atom	Length/Å
Mg2	Mg1 ¹	3.554(2)
Mg2	$Mg1^2$	3.568(2)
Mg2	Mg1	3.554(2)
Mg2	Mg1 ³	3.568(2)
Mg2	021	2.050(2)
Mg2	02	2.050(2)
Mg2	094	2.084(2)
Mg2	09 ⁵	2.084(2)
Mg2	05 ³	2.094(2)
Mg2	05 ²	2.094(2)
Mg2	H2	2.41(4)
Mg1	Mg2 ⁶	3.568(2)
Mg1	$Mg1^2$	3.040(3)

Table S7: Selected Bond Lengths in Å for Solid2.

Atom	Atom	Length/Å
Mg1	022	2.054(2)
Mg1	02	2.045(2)
Mg1	04	2.079(2)
Mg1	085	2.088(3)
Mg1	01	2.104(2)
Mg1	03	2.102(2)
Mg1	H2	2.33(4)
02	$Mg1^2$	2.055(2)
09	Mg2 ⁷	2.084(2)
05	Mg2 ⁶	2.094(2)
08	Mg1 ⁸	2.088(2)

¹1-x,2-y,1-z; ²1-x,1-y,1-z; ³+x,1+y,+z; ⁴1-x,1+y,3/2-z; ⁵+x,1y,-1/2+z; ⁶+x,-1+y,+z; ⁷1-x,-1+y,3/2-z; ⁸+x,1-y,1/2+z

Atom	Atom	Atom	Angle/°	
Mg1	Mg2	Mg1 ¹	179.999(12)	Γ
Mg1 ²	Mg2	Mg1 ³	180.0	1
Mg1 ¹	Mg2	Mg1 ³	129.47(5)	
Mg1	Mg2	Mg1 ²	129.47(5)	
Mg1 ¹	Mg2	Mg1 ²	50.53(5)	
Mg1	Mg2	Mg1 ³	50.53(5)	
Mg1 ²	Mg2	H2	138.5(9)	
Mg1 ¹	Mg2	H2	139.4(9)	
Mg1	Mg2	H2	40.6(9)	
Mg1 ³	Mg2	H2	41.5(9)	
021	Mg2	Mg1 ²	29.66(6)	
02	Mg2	Mg1	29.73(6)	
02	Mg2	$Mg1^1$	150.27(6)	
021	Mg2	Mg1	150.27(6)	
021	Mg2	$Mg1^{1}$	29.73(6)	
02 ¹	Mg2	Mg1 ³	150.34(6)	
02	Mg2	Mg1 ³	29.66(6)	
02	Mg2	$Mg1^2$	150.34(6)	
021	Mg2	02	180.0	
021	Mg2	094	94.46(8)	
02	Mg2	09 ⁴	85.54(8)	
021	Mg2	095	85.54(8)	
02	Mg2	095	94.46(8)	
021	Mg2	05 ²	94.75(8)	
021	Mg2	05 ³	85.25(8)	
02	Mg2	05 ²	85.24(8)	
02	Mg2	05 ³	94.76(8)	
02	Mg2	H2	17.3(9)	
021	Mg2	H2	162.7(9)	
095	Mg2	Mg1 ¹	114.30(6)	
094	Mg2	Mg1 ¹	65.70(6)	
094	Mg2	Mg1 ³	78.93(6)	
095	Mg2	$Mg1^2$	78.93(6)	

Atom	Atom	Atom	Angle/°	
09 ⁴	Mg2	Mg1 ²	101.07(6)	
095	Mg2	Mg1	65.70(6)]
09 ⁴	Mg2	Mg1	114.30(6)	1
09 ⁵	Mg2	Mg1 ³	101.07(6)]
09 ⁵	Mg2	094	180.0]
09 ⁴	Mg2	05 ³	89.98(10)	
09 ⁵	Mg2	05 ³	90.02(10)	
09 ⁵	Mg2	05 ²	89.98(10)]
09 ⁴	Mg2	05 ²	90.02(10)	
09 ⁵	Mg2	H2	105.9(9)	
09 ⁴	Mg2	H2	74.1(9)	
05 ³	Mg2	Mg1	101.42(6)	
05 ³	Mg2	Mg1 ²	113.96(6)	
05 ²	Mg2	Mg1 ³	113.96(6)	
05 ²	Mg2	Mg1	78.58(6)	
05 ³	Mg2	Mg1 ³	66.04(6)	
05 ³	Mg2	$Mg1^1$	78.58(6)	
05 ²	Mg2	$Mg1^1$	101.42(6)	
05 ²	Mg2	Mg1 ²	66.04(6)	
05 ³	Mg2	05 ²	180.0	
05 ³	Mg2	H2	107.3(9)	
05 ²	Mg2	H2	72.7(9)]
Mg2	Mg1	Mg2 ⁶	129.47(5)	
Mg2 ⁶	Mg1	H2	101.2(9)	
Mg2	Mg1	H2	42.4(9)	
Mg1 ³	Mg1	Mg2 ⁶	64.50(4)	
Mg1 ³	Mg1	Mg2	64.97(4)	
Mg1 ³	Mg1	H2	50.5(9)	
02	Mg1	Mg2	29.82(6)	
023	Mg1	Mg2 ⁶	29.59(6)	
023	Mg1	Mg2	103.73(8)	
02	Mg1	Mg2 ⁶	103.51(8)	
02	Mg1	Mg1 ³	42.26(7)	

Г

Atom	Atom	Atom	Angle/°
O2 ³	Mg1	Mg1 ³	42.00(7)
02	Mg1	O2 ³	84.26(11)
02	Mg1	04	92.10(10)
02 ³	Mg1	04	94.30(10)
02	Mg1	085	95.06(10)
02 ³	Mg1	085	92.11(10)
O2 ³	Mg1	01	176.30(10)
02	Mg1	01	92.76(10)
02	Mg1	03	176.71(10)
O2 ³	Mg1	03	92.61(10)
02 ³	Mg1	H2	90.1(9)
02	Mg1	H2	18.7(9)
04	Mg1	Mg2 ⁶	71.51(6)
04	Mg1	Mg2	112.51(7)
04	Mg1	Mg1 ³	94.32(7)
04	Mg1	085	170.83(9)
04	Mg1	01	83.58(9)
04	Mg1	03	89.17(9)
04	Mg1	H2	74.0(9)
085	Mg1	Mg2	72.13(7)
085	Mg1	Mg2 ⁶	112.17(7)
085	Mg1	Mg1 ³	94.83(7)
085	Mg1	01	90.35(9)
08 ⁵	Mg1	03	84.00(9)
085	Mg1	H2	112.6(10)
01	Mg1	Mg2 ⁶	150.46(7)
01	Mg1	Mg2	74.41(8)
01	Mg1	Mg1 ³	134.98(8)
01	Mg1	H2	86.4(9)
03	Mg1	Mg2	151.29(7)
03	Mg1	Mg2 ⁶	74.02(8)
03	Mg1	Mg1 ³	134.61(8)
03	Mg1	01	90.40(10)
03	Mg1	H2	163.1(9)

¹1-x,2-y,1-z; ²+x,1+y,+z; ³1-x,1-y,1-z; ⁴1-x,1+y,3/2-z; ⁵+x,1y,-1/2+z; ⁶+x,-1+y,+z; ⁷1-x,-1+y,3/2-z; ⁸+x,1-y,1/2+z

Citations

Bruker D8 Quest

L.J. Bourhis and O.V. Dolomanov and R.J. Gildea and J.A.K. Howard and H. Puschmann, The Anatomy of a Comprehensive Constrained, Restrained, Refinement Program for the Modern Computing Environment - Olex2 Disected, *Acta Cryst. A*, (2015), **A71**, 59-71.

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.

Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Bruker axs, Madison, WI (after 2013).

Fig. S6 FT-IR spectra of solids (a) 1, (c) 2, (b) 1', (d) 2', (e) H_2SBA and (f) H_2FBA

	Solid 1	Solid 1'		Solid 2	Solid 2 '
Cd-O stretch	482	480	Mg-O stretch	450	487
C-S stretch			C-S stretch	1013	1025
Cd-O-Cd	730	793	Mg-O-Mg	743	736
Bending			Bending		
C-F	1170	1023	S=O	1013	1025
stretch			stretch		
C-O stretch	1320	1361	C-O stretch	1410	1405
C-N (solvent)	1514		C-N (solvent)	1500	
C=C	1394	1361	C=C	1291	1296
(aromatic)			(aromatic)		
C=O	1609	1592	C=O	1625	1610
(solvent)			(solvent)		
-OH stretch	3440	3340	-OH stretch	3418	3543

Table S9: Selected vibrational frequencies (cm⁻¹) for reported solids

FT-IR spectra for solids **1** and **1'** with *FBA* ligand, displayed broad peak at 3440 cm⁻¹ and 3340 cm⁻¹ for O–H stretching of the carboxylic acid. However, the absence of water and corresponding hydrogen bonds can be felt in the absence of dominant broad peaks around 3300 cm⁻¹ in solid **1'**. Sharp peaks around 2890cm⁻¹ for **1** and 2928cm⁻¹ for **1'** represent the sp² of the aromatic ring. Peaks from 1609 and 1592 cm⁻¹ depict the symmetric stretch of carboxylate while the peaks around 1572-1462 cm⁻¹ resulted from the asymmetric stretch of carboxyl of acid in solid **1** and **1'**. Multiple sharp peaks ranging from ~1390 to 1360cm⁻¹ are from symmetric and antisymmetric stretch of C=C which is at lower end compared to isolated C=C depicting a partial single bond owing to resonance in the ring of solid **1** and **1'**. Peaks around 1170 cm⁻¹ and 1110cm⁻¹ in solid **1** as well as peaks around 1155 cm⁻¹ and 1023 cm⁻¹ in **1'** are from the asymmetric C–F bonds and sylllinetrical stretching respectively. Presence of peaks near 845cm⁻¹, 793cm⁻¹, 630cm⁻¹ indicate the para-substitution of phenyl rings. The stretching peaks near 730-740cm⁻¹ depict the presence of Cd–O–Cd bond. Cd-O symmetric stretch appears near 482–450cm⁻¹. The stretching peak at 1514cm⁻¹ is due to the C–N bond whereas in **1'** this peak disappeared.

In solid **2**, EtOH and H₂O molecule displayed broad peaks peak at 3543 cm⁻¹ and 3351 cm⁻¹. The broad range is because of the water, EtOH and presence of a hydrogen bonding in the vicinity of the oxygen. For solid **2'**, the broad peaks at 3418 cm⁻¹ suggested the μ_3 –OH and -OH stretching of carboxylic group. The absence of C–N bond stretching peaks near 1500 cm⁻¹ in **2'** concluded that solvent molecules has been removed from the sample. The stretching peaks for **2** near 1013cm⁻¹ and 1102 cm⁻¹ as well as stretching peaks for **2'** near 1025cm⁻¹ and 1125cm⁻¹ depicts the presence of C–S bond. The asymmetric and symmetric O=S=O occur as strong absorption band near 1164 cm⁻¹ and 1410 cm⁻¹ for **2** and 1165cm⁻¹ and 1405 cm⁻¹ **2'** respectively. C=O symmetric stretch near 1291cm⁻¹ and asymmetric around 1625 cm⁻¹ in solid **2** and 1296cm⁻¹, 1610cm⁻¹ in **2'** is due to the combination of the donation of electron to the metal and strong electronic effect present from the two sulfonyl oxygens which is a typical electron withdrawing effect. The stretching peaks near 743 and 736 cm⁻¹ depict the presence of Mg–O–Mg bond in solid **2** and **2'**. Mg–O symmetric stretch appears near 450, 487cm⁻¹ in both the solids. The stretching peaks 1013 cm⁻¹ and 1025 cm⁻¹ depicts the presence of S=O bonds in **2** and **2'**.

Fig. S7 PXRD pattern comparison of simulated (solid 1), as synthesized (solid 1) and heated sample (**Solid 1'**).

Fig. S8 PXRD pattern comparison of simulated (solid 2), as synthesized (solid 2) and heated sample (Solid 2').

References:

1Balendra, Sanyukta, M. Ali and S. Murugavel, *Inorganic Chemistry Communications*, 2023, **148**, 110280.