On the pK of crystal surfaces:

molecular modelling of crystallite protonation, local reorganization, and solute dissociation

Patrick Duchstein[#], Moritz Macht[#], Dirk Zahn^{*}

Supporting Information

The atomic partial charges were obtained following the two-step restricted electrostatic potential (RESP) method explained in the simulation details part by Gadelmeier et al.. The charges of the charged carbamazepine species were generated in analogous manner, while charge shift was restricted to atoms N₂₅ to H₃₁.

Atom		Chargo / o	Atom		Chargo / o
Atom	Charge / e CBZ	CBZH+	Atom	Charge / e CBZ	CHarge / e CBZH+
C ₁	-0.144727	"	C ₁₆	0.169333	"
H ₂	0.150322	u	C ₁₇	-0.242432	u
C ₃	-0.15251	u	H ₁₈	0.164999	u
H_4	0.150956	u	C ₁₉	-0.144727	u
C ₅	-0.242432	"	H_{20}	0.150322	"
H ₆	0.164999	"	C ₂₁	-0.15251	"
C ₇	0.158977	"	H ₂₂	0.150956	"
C ₈	0.169333	"	C ₂₃	-0.205923	u
C ₉	-0.205923	"	H ₂₄	0.173583	u
H ₁₀	0.173583	"	N ₂₅	-0.370568	-0.057925
C ₁₁	-0.232443	u	C ₂₆	0.848475	0.855558
H ₁₂	0.151156	u	O ₂₇	-0.599942	-0.540213
C ₁₃	-0.232443	u	N ₂₈	-0.922229	-0.917324
H ₁₄	0.151156	u	H ₂₉	0.380842	0.441120
C ₁₅	0.158977	u	H ₃₀	0.380842	0.441120
			H ₃₁	-	0.495070

Table S1 Atomic partial charges. Parameters using the notation of atoms as in Fig.1.

The bond description employed is a harmonic potential, which is implemented in LAMMPS as

$$E_{bond} = K * (r - r_0)^2$$

where r_0 is the equilibrium bond distance. The angle term employed is a harmonic potential given in LAMMPS by

 $E_{angle} = K * (\delta - \delta_0)^2$

where δ_0 is the equilibrium value of the angle. The dihedral terms employed in LAMMPS with the following term by

 $E_{dihedral} = K * [1 + cos(n\varphi - d)]$

Table S2 Newly added intramolecular force-field parameters for modGAFF. Parameters using the notation of atoms as in Fig.1.

Bonds	K/eV		r ₀ / Å
C ₇ -C ₁₁	17.699516		1.4614
C ₇ -C ₈	26.995188		1.3961
C ₈ -N ₂₅	20.660489		1.4231
C ₁₁ -C ₁₃	31.000000		1.3373
C ₁₃ -C ₁₅	17.699516		1.4614
C ₁₅ -C ₁₆	19.995188		1.3961
N ₂₅ -O ₂₆	15.542491		1.3878
C ₂₆ -N ₂₈	20.542491		1.3938
Angles	K / eV		δ₀/°
C ₇ -C ₁₁ -C ₁₃	2.431413		127.7251
$C_8 - N_{25} - C_{16}$	1.509994		117.5021
C ₈ -N ₂₅ -C ₂₆	1.509994		117.5000
N_{25} - C_{26} - O_{27}	3.717617		122.3830
Dihedral	K/eV	n	d / °
C ₈ -C ₇ -C ₁₁ -C ₁₃	0.030355	2	180
N ₂₅ -C ₂₆ -N ₂₈ -H ₃₀	0.021025	2	0

The following changes in interaction description occur upon protonation of the neutral species carbamazepine.

Pair	ε / eV	σ / Å		
O ₂₇	0.009124	3.066473		
H ₃₁	0.000650	2.599642		
Bonds	K / eV		r ₀ / Å	
N ₂₅ -C ₂₆	15.542500	1.3164		
C ₂₆ -O ₂₇	18.108900		1.3083	
N ₂₈ -H ₂₉	17.484400	1.0070		
N ₂₈ -H ₃₀	17.484400		1.0070	
O ₂₇ -H ₃₁	16.105400	0.9611		
Angles	K / eV	δ₀/°		
N_{25} - C_{26} - O_{27}	3.717620	116.7460		
N_{25} - C_{26} - N_{28}	3.161240	121.8260		
C_{26} - N_{28} - H_{29}	1.894490	120.5030		
C_{26} - N_{28} - H_{30}	1.894490	120.5030		
O_{27} - C_{26} - N_{28}	3.017620	123.0000		
H_{29} - N_{28} - H_{30}	1.117220	118.4810		
$C_{26}-O_{27}-H_{31}$	2.000000		113.7940	
Dihedral	K / eV	n	d / °	
$C_8 - N_{25} - C_{26} - O_{27}$	0.128075	2	180	
$C_8 - N_{25} - C_{26} - N_{28}$	0.128075	2	180	
C_{16} - N_{25} - C_{26} - O_{27}	0.128075	2	180	
C_{16} - N_{25} - C_{26} - N_{28}	0.128075	2	180	
N_{25} - C_{26} - N_{28} - H_{30}	0.077500	2	180	
O_{27} - C_{26} - N_{28} - H_{29}	0.077500	2	180	
N_{25} - C_{26} - O_{27} - H_{31}	0.111383	2	180	
N_{28} - C_{26} - O_{27} - H_{31}	0.245532	2	180	

Table S3. Changes in molecular description upon protonation of CBZ to CBZH+. Parameters using the notation of atoms as in Fig.1.

The following changes in interaction description occur upon protonation of the neutral species carbamazepine.

The following statistic shows the distribution of computed pKa values as observed for the calcite model featuring the screw-like crystallite. Here, negative pKa refers to particularly unfavorable protonation energy, whereas only protonation of sites with pKa > 3 and pKa > 4 were explored in detail.

Figure S1

Relative occurrence of instantaneous pKa values of carbonate ions on the calcite nanoparticle surface. The colors correspond to the ones in Figure 5.