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1. Experimental Section

1.1 Chemical and Materials.

Nickel nitrate hexahydrate (Ni(NO3)2·6H2O), iron nitrate nonahydrate 

(Fe(NO3)3·9H2O), urea (CH4N2O), ammonium fluoride (NH4F), potassium hydroxide 

(KOH), and a 5% Nafion solution were all purchased from Aladdin Chemical Reagent 

Company. Deionized water was collected via a purification system. All reagents were 

used as received without further purification.

1.2 Preparation of NiFe-LDH via a one-step hydrothermal method.

A 0.2 M solution of Ni(NO3)2·6H2O, a 0.05 M solution of Fe(NO3)3·9H2O, and a 

1.25 M solution of urea were each mixed thoroughly in 10 ml, followed by the addition 

of different volumes of 2.5 M NH4F solution and the appropriate amount of deionized 

water to achieve a total solution volume of 40 ml. The well-mixed solution was 

transferred to a stainless-steel autoclave lined with polytetrafluoroethylene and 

subjected to hydrothermal treatment at 120 °C for 12 hours. After cooling to room 

temperature, the resulting material was washed several times with deionized water and 

anhydrous ethanol, followed by overnight drying at 60°C to obtain the composite 

material. The obtained samples were named NFL-xF (where x represents the amount of 

NH4F added, corresponding to 0, 1, 3, 5, 7, and 9 times the concentration of Fe3+ ions). 

Under the same conditions, β-Ni(OH)2 and β-FeOOH were prepared as the control 

samples by omitting either the Fe precursor or the Ni precursor.

1.3 Materials characterizations. 



The crystalline structure of the as-synthesized samples was investigated using X-ray 

diffraction (XRD) with a Bruker D8 X-ray diffractometer equipped with a Cu target Kα 

radiation source. The morphology of the samples was observed using scanning electron 

microscopy (SEM) with a Hitachi S-800 instrument. The microstructure and crystal 

structure of the samples were examined using transmission electron microscopy (TEM) 

with a JEOL-JEM 2100 Plus instrument, and high-resolution TEM characterization was 

conducted using a double spherical aberration-corrected transmission electron 

microscope (JEOL-ARM 300F) in TEM mode. X-ray photoelectron spectroscopy 

(XPS) was employed to study the binding energies of Ni 2p, Fe 2p, and O 1s in different 

samples, with binding energy calibrated using C 1s (284.8 eV) and elemental valence 

state changes simulated using Avantage software. Fourier-transform infrared 

spectroscopy (FT-IR) characterization was performed as well.

1.4 Electrochemical tests. 

The electrochemical performance of the samples was tested using a standard three-

electrode system on an electrochemical workstation (Shanghai Chenhua, CHI660E). 

The three electrodes consisted of a working electrode (glassy carbon electrode loaded 

with active material, diameter 0.3 cm), a reference electrode (Ag/AgCl in 3 M KCl 

solution), and a counter electrode (platinum wire). The electrolyte used during testing 

was a 1 M KOH solution, and prior to testing, high-purity nitrogen gas was 

continuously bubbled into the electrolyte for 30 minutes to remove oxygen. The 

electrode activation process was conducted using cyclic voltammetry (CV) with a scan 

range of −0.1 V to 0.9 V at a scan rate of 5 mV·s−1until the electrode reached a steady 



state. Subsequently, linear sweep voltammetry (LSV) was performed at a scan rate of 

1 mV·s−1. Electrochemical impedance spectroscopy was conducted over a frequency 

range from 100 kHz to 0.1 Hz, and 85% iR compensation was applied to all polarization 

curves to correct for solution resistance. Furthermore, all potentials were converted to 

the reversible hydrogen electrode (RHE) scale using the Nernst equation:  

ERHE = EAg/AgCl + 0.0592 × pH + E0Ag/AgCl

where ERHE represents the potential relative to RHE, EAg/AgCl is the experimental 

potential measured relative to Ag/AgCl, E0Ag/AgCl is the standard potential of the 

Ag/AgCl reference electrode at room temperature (25 ± 1 °C), measured as 0.195 V in 

this work. The stability of the electrodes was evaluated through chronoamperometry at 

a current density of 120 mA·cm−2.



Supplementary Figures

Figure S1. SEM image, TEM image and insert the FFT pattern of (a, c) NFL-0F, (b, d) 

NFL-1F.



Figure S2. XRD patterns of (a) β-Ni(OH)2 and (b) β-FeOOH; TEM image and insert 

the FFT pattern of (c) β-Ni(OH)2, (d) β-FeOOH.



Figure S3. The EDS elemental mapping of the Ni K-edge, Fe L-edge and O K-edge of 

NFL-7F. 



Figure S4. The XPS survey spectra of NFL-5F, NFL-7F and NFL-9F.



Figure S5. Comparison of M-O bonds of O1s in XPS spectra of NFL-5F, NFL-7F and 

NFL-9F. 
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Figure S6. FT-IR spectra of NFL-5F, NFL-7F and NFL-9F.



Figure S7. LSVs of NFL-7F, RuO2 and Carbon Black for catalyzing OER in 1.0 M 

KOH 



Figure S8. LSVs of NFL-7F, β-Ni(OH)2 and β-FeOOH for catalyzing OER in 1.0 M 

KOH



Figure S9. CV curves at different scan rates for (a) NFL-0F, (b) NFL-1F, (c) NFL-3F, (d) NFL-

5F, (e) NFL-7F, and (f) NFL-9F.
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Figure S10. Comparison of XRD characterization profiles before and after it test.



Figure S12. TEM image of NFL-7F after it test.



Table S1. Comparison with reported state-of-the-art catalysts for the oxygen evolution reaction.

Catalyst Overpotential at 50 mA·cm-2 (mV) Tafel slope (mV·dec-1) References

NivacFevac-LDH 310 52 [1]

NiFe-25° 330 48.7 [2]

NiFeⅢ(1:1) 382 31.1 [3]

NiFe-LDH pyramid electrode 310 66 [4]

r-NiFe LDH 320 83 [5]

PR-NiFe LDH 330 75 [6]

NiFe25/PGS 362 33 [7]

10-NiFe LDH/CNTs 280 30 [8]

NiFe LDH-Ni(Ⅲ)Li 280 35 [9]

Ni-BDC@NiFe-LDH-2 310 45 [10]

Ni2Fe1-LDH/rGO/NF 300 37.9 [11]

MIL-101@NiFe-LDH 340 61.1 [12]

NiFe-LDH-Ti4O7 350 35 [13]

Ni/LDH-ZnO (2 min) 310 57 [14]

NFO/3DGN-10 355 64 [15]

NFL-7F 270 68.1 This work
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