## Journal Name

### ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

# Stereomutations in silicate oligomerization: Role of steric hindrance and intramolecular hydrogen bonding : Supplementary information<sup>†</sup>

Dipak Prasad,\*a and Nilanjan Mitra,<sup>b‡</sup>

Received Date Accepted Date

DOI: 00.0000/xxxxxxxxx

#### Effect of Exchange Correlation

B3LYP is a well-recognized hybrid exchange-correlation functional which had been incorporated to investigate a wide variety of reaction mechanisms. The only disadvantage associated with B3LYP is that it underestimates the H-Bond strength (as reported in previous literature by Wijst et. al.<sup>1</sup>) due to the absence of dispersion corrections. To identify the possible effects of dispersion corrections, some of the cases of stereomutations have been investigated using  $\omega$ B97XD. The activation barrier and net change in free energy of different stereomutations calculated using  $\omega$ B97XD have been provided in the table 1. Simultaneously, these values obtained from B3LYP have been mentioned within the parenthesis. The strength of intramolecular H-Bonds which govern  $E_a$  and  $\Delta G$  have been listed in table 2 which demonstrates the low strength being predicted by B3LYP. In spite of this factor, the overall conclusion drawn from B3LYP calculation regarding the effects of intramolecular H-Bonds on the  $E_a$  and  $\Delta G$  also holds for  $\omega$ B97XD.

#### Pseudorotation in trimer silicate ring

Fig. 1 shows the M1 and  $M3_{alt}$  mechanism of pseudorotation in a 3-member silicate ring resulting from anionic-II condensation. Here Si2-O1 is the bridging bond formed by the nucleophilic attack of O1 on Si2 atom (fig. 1d). The anionic-II mechanism can be characterized by the hydroxyl groups O4-H2 pointing towards

Table 1 Comparison of activation barrier  $(E_a)$  and net change in free energy  $(\Delta G)$  for different stereomutations calculated using  $\omega$ B97XD and B3LYP (given in parenthesis)

| Oligomer | Process (Transition         | $E_a$ (kcal/mol) | $\Delta G$ (kcal/mol) |
|----------|-----------------------------|------------------|-----------------------|
|          | state fig in the main file) |                  |                       |
| Dimer    | M1 (fig. 1b)                | 9.8 (10.5)       | 7.2 (9.4)             |
| Dimer    | M1 (fig. 2b)                | 6.0 (5.3)        | 2.9 (2.1)             |
| Dimer    | M1 (fig. 2d)                | 5.5 (5.5)        | 2.1 (2.0)             |
| Dimer    | M1 (fig. 3b)                | 8.2 (9.2)        | 7.1 (8.0)             |
| Dimer    | M3 (fig. 3d)                | 8.7 (9.6)        | 1.0 (2.3)             |
| Trimer   | M1 (fig. 8b)                | 6.1 (5.9)        | 3.8 (3.1)             |
| Trimer   | M3 (fig. 8e)                | 10.7 (10.8)      | 0.9 (1.8)             |

Table 2 Comparison of H-bond strength for different H-bonds calculated using  $\omega$ B97XD and B3LYP(given in parenthesis)

| 01:                               | TT have de | $\Gamma$ (less 1 (mod 1) |
|-----------------------------------|------------|--------------------------|
| Oligomer                          | H-DONGS    | $E_{stb}$ (kcal/mol)     |
| Dimer (from anionic-I) (fig. 1a)  | 02-H1…06   | 14.2 (12.0)              |
| Dimer (from anionic-II) (fig. 3a) | O2-H1…O6   | 14.9 (12.4)              |
| Trimer (fig. 5a)                  | O7-H5···O3 | 12.5 (11.1)              |
| Trimer (fig. 5a)                  | O6-H4···O5 | 11.7 (10.9)              |

<sup>&</sup>lt;sup>a</sup> Department of Civil Engineering, Indian Institute of Technology Kharagpur, India <sup>b</sup> Hopkins Extreme Material Institute, Johns Hopkins University. E-mail: nmitra1@jhu.edu

<sup>†</sup> Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 00.0000/00000000.
‡ Additional footnotes to the title and authors can be included *e.g.* 'Present address:' or 'These authors contributed equally to this work' as above using the symbols: ‡, §, and ¶. Please place the appropriate symbol next to the author's name and include a \footnotetext entry in the the correct place in the list.



Fig. 1 M1 pseudorotation about Si2-O4 bond as a pivot in 3-member silicate ring. (a) Reactant ([Si2-O4, Si2-O2, Si2-O5]  $\rightarrow$  equatorial and [Si2-O1, Si2-O3]  $\rightarrow$  apical) (b) Transition state and (c) Product ([Si2-O2, Si2-O5]  $\rightarrow$  apical and [Si2-O1, Si2-O3, Si2-O4]  $\rightarrow$  equatorial);  $M3_{alt}$  mechanism of rearrangement about bridging Si2-O2 bond as a pivot in 3-member silicate ring (d) Reactant ([Si2-O4, Si2-O2, Si2-O5]  $\rightarrow$  equatorial and [Si2-O1, Si2-O3]  $\rightarrow$  apical) (e) Transition state and (f) Product ([Si2-O2, Si2-O3]  $\rightarrow$  apical and [Si2-O1, Si2-O4, Si2-O5]  $\rightarrow$  equatorial) (color in web version: Si-grey, H-white, O-red)

the nucleophile O1 atom and O5-H3 directing in the opposite direction. The M1 pseudorotation takes place about pivot Si2-O4 as the corresponding initial reactant has been shown in fig. 1a. Fig. 1b demonstrates the transition state with the hydroxyl group attached to pivot O4-H2 rotating towards Si2-O5. The bond angles O1-Si2-O3 and O2-Si2-O5 are measured as 154.84° and 153.99° respectively at transition state. The process accomplishes with bond angle O1-Si2-O3 reducing to 116.12° and O2-Si2-O5 rising to 175.03° in the final product. The activation barrier(*E<sub>a</sub>*) and net change in free energy( $\Delta G$ ) of this process are determined as 5.42 kcal/mol and 0.23 kcal/mol respectively.

The bridging Si2-O2 bond acts as a pivot in the M3<sub>alt</sub> mechanism. Fig. 1e shows the transition state for this process which resembles trigonal bipyramidal geometry (TBP). The bond angles primarily involved in reaction coordinate are O1-Si2-O3 and O4-Si2-O5. These are measured as  $127.24^{\circ}$  and  $173.48^{\circ}$ respectively at the transition state. This is quite similar to the transition state for  $M3_{alt}$  mechanism for silicate ring-I as shown in fig. 11e in the main file. The  $E_a$  and  $\Delta G$  is determined as 8.93 kcal/mol and 0.16 kcal/mol respectively. The process concludes with O1-Si2-O3 reducing to 92.78° and O4-Si2-O5 rising to  $126.02^{\circ}$  in the final product. The  $M3_{alt}$  mechanism in dimer silicate resulting from anionic-II condensation has been shown in fig. 3 of the main file. The absence of a hydroxyl group at O2 facilitates this process. The possibility of  $M3_{alt}$  mechanism persists even if O2 would be a part of hydroxyl group O2-H. During pseudorotation O2-H would rotate towards either Si2-O4 or Si2-O5. Rotation of O2-H towards Si2-O5 would lead to  $M3_{alt}$  process. However, rotation of O2-H towards Si2-O4 would prevent the rotation of O4-H2 by steric hindrance which would ultimately result in M1 pseudorotation.

#### Notes and references

1 T. van der Wijst, C. F. Guerra, M. Swart and F. M. Bickelhaupt, *Chemical Physics Letters*, 2006, **426**, 415–421.