Supporting Information

Compositional transferability of deep potential in molten LiF-BeF₂ and LaF₃ mixtures: Prediction of density, viscosity, and local structure

Xuejiao Li*, Tingrui Xu, Yu Gong*

^a Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

S1. RMSEs of energy and force

In **Fig. S1**, the energy and force of molten $\text{Flibe}+\text{LaF}_3$ achieve convergence after 1,000,000 training steps, and average RMSEs of the last 5000 training steps for energy and force are 1.9 meV atoms⁻¹ and $3.5 \times 10^{-2} \text{ eV } \text{Å}^{-1}$, respectively.

*Corresponding authors.

E-mails: lixuejiao@sinap.ac.cn; gongyu@sinap.ac.cn

Fig. S1 RMSEs of energy (black points) and force (orange points) for molten Flibe+LaF₃ in the

training stage

S2. DPMD simulated MSDs and RDFs

Fig. S2 MSDs of molten Flibe+LaF₃ at different LaF₃ concentrations and the slopes of MSDs

Fig. S3 RDFs and their integral curves of Be-F, Li-F, La-F, F-F, Be-Be, and Li-Li for molten

Flibe+xLaF₃