Supplementary information

High-throughput screening of transport behavior on tetragonal perovskite

Yuanyuan Chen,
¹ Lu Xiao,¹ Libin Shi,¹,* and Ping Qian²,†

¹College of Physical Science and Technology, Bohai University, Jinzhou 121013, PR China ²Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physics, University of Science and Technology Beijing, Beijing 100083, PR China

^{*} slb0813@126.com

 $^{^{\}dagger}$ qianping@ustb.edu.cn

Figure S1. Poisson's ratio for K, Rb-based perovskites. (a) K-based perovskites, (b) Rb-based perovskites.

Figure S2. The elastic modulus for K, Rb-based perovskites. (a) K-based perovskites, (b) Rb-based perovskites.

Figure S3. The reciprocal of effective mass for K, Rb-based perovskites. (a) K-based perovskites. (b) Rb-based perovskites.

Figure S4. The deformation potential (DP) constant for K, Rb, Cs-based perovskites, which was obtained by the band edge shift at uniaxial strain. (a) K-based perovskites. (b) Rb-based perovskites. (c) Cs-based perovskites.

Figure S5. The electron and hole mobilities of K, Rb-based perovskites predicted by the LAP model. (a) K-based perovskites. (b) Rb-based perovskites.

Figure S6. High frequency dielectric constants along x and z-axis directions for K, Rb-based perovskites. The results were calculated using fully relaxed lattice and z-axis strain of $\pm 2\%$.

Figure S7. The longitudinal optical phonon frequency of K, Cs-based perovskites. The results were calculated using fully relaxed lattice and z-axis strain of $\pm 2\%$.

Figure S8. The mobility of K, Rb-based perovskites was predicted by the POP model. (a) K-based perovskites, (b) Rb-based perovskites.

Material	a/c(Å)	$\mu_{e,x}(\mathrm{cm}^2\mathrm{V}^{-1}\mathrm{s}^{-1})$	$\mu_{e,z}({\rm cm}^{2}{\rm V}^{-1}{\rm s}^{-1})$	$\mu_{h,x}(\mathrm{cm}^2\mathrm{V}^{-1}\mathrm{s}^{-1})$	$\mu_{h,z}(\mathrm{cm}^2\mathrm{V}^{-1}\mathrm{s}^{-1})$
CsGeBr_3	7.99/5.38	533	69	811	764
CsGeI_3	8.53/5.78	1070	211	1334	1665
CsSnI_3	8.87/6.10	960	814	1268	2013
KGeI_3	8.31/5.76	197	392	261	1643
KSnI_3	8.67/6.03	205	605	280	1659
${ m RbGeBr}_3$	7.89/5.39	376	83	568	809
$\mathrm{Rb}\mathrm{GeI}_3$	8.42/5.80	514	242	612	1555
${\rm RbSnI}_3$	8.74/6.08	303	637	415	1560

Table S1. Under the compressive strain of -4%, some perovskites were predicted to exhibit high carrier mobility.