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S1. Comparison of simulation results

To validate our simulation procedure, we conducted equilibrium molecular
dynamics (EMD) simulations using the Green-Kubo formalism for a graphene
nanoribbon measuring 10 nm×1 nm×0.34 nm in dimension, as illustrated in
Fig.S1. The chosen system dimensions were adopted from Ref.[S1] and [S2]
to facilitate a comparison of the computed thermal conductivity. Initially,
the system was thermally equilibrated at 300 K through a Nose-Hoover ther-
mostat in the NVT ensemble, employing 3 × 105 time steps. Subsequently,
the NVE ensemble was employed for 1× 107 time steps to calculate the heat
flux correlation function. The carbon-carbon interaction was modeled using
an optimized Tersoff potential with a time step of 0.5 fs. Consistency was
maintained in the simulation procedure, potential, and system dimensions,
following Ref.[S1] and [S2]. The resulting thermal conductivities were com-
pared and illustrated in Fig.S2. Notably, our computed thermal conductivity
aligns well with the values reported in Ref.[S1] and [S2].
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Figure S1: Graphene nanoribbon.
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Figure S2: Thermal conductivity of graphene nanoribbon.

S2. Effect of system size on thermal conductivity
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Figure S3: Thermal conductivity of a PG system with varying system di-
mensions. The values within the brackets [ ] indicate the number of unit
cells considered for the analysis along the x, y and z directions, respectively.
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S3. Comparison of PPR to study the effect of defect location in
PGz configuration
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Figure S4: (a)-(b) Comparative analysis of phonon participation ratio in
defect-free and defective PGz configuration at LA and ZA phonon modes.

S4. Comparison of PPR to study the effect of defect type in PGz

configuration
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Figure S5: (a)-(b) Comparative analysis of phonon participation ratio in
defect-free, sw-C, and sv-C PGz configurations for LA and ZA phonon modes.
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