SUPPORTING INFORMATION FOR

Mechanical Properties of Amorphous CO₂ Hydrates: Insights from Molecular Simulations

Pinqiang Cao ^{1, *}, Jianyang Wu ², Fulong Ning ³

¹ School of Resource and Environmental Engineering, Wuhan University of Science and Technology,

Wuhan, Hubei 430081, China

² Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key

Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China

³ Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China.

Email address:

Pinqiang Cao: pinqiang2022@163.com;

Jianyang Wu: jianyang@xmu.edu.cn;

Fulong Ning: <u>nflzx@cug.edu.edu</u>;

*To whom correspondence should be addressed: pinqiang@wust.edu.cn; pinqiang2022@163.com;

This PDF File Includes:

Figure S1. Potential energy of amorphous CO₂ hydrates.

Figure S2. Radial distribution function (RDF) of amorphous CO₂ hydrates with a water/CO₂ ratio of about 5.98 at 263.15 K and 100 atm.

Figure S3. N-Hbond-DOP order parameter of amorphous CO₂ hydrates.

Figure S4. N-CO₂-DOP order parameter of amorphous CO₂ hydrates.

Figure S5. Mechanical properties of six different amorphous CO_2 hydrate samples with a water/ CO_2 ratio of 5.98 at 263.15 K and 100 atm.

Figure S6. DOP order parameter of amorphous CO_2 hydrates with a water/ CO_2 ratio of 5.98 at 263.15 K and 100 atm.

Figure S7. Molecular structures of CO_2 molecules in amorphous CO_2 hydrates with a water/ CO_2 ratio of 5.98 at 283.15 K and 100 atm.

Other Supporting Online Material for This Manuscript Includes the Following:

Movies S1-S6. Visualization of amorphous CO₂ hydrates under mechanical loads.

Movies S7-S8. Visualization of CO_2 molecules in amorphous CO_2 hydrates with a water/ CO_2 ratio of about 5.98 at 283.15 K and 100 atm.

Supporting Supplementary Materials

Figure S1. Potential energy of amorphous CO₂ hydrates. (a) Four amorphous CO₂ hydrate systems with a water/CO₂ ratio of about 5.98 at 263.15 K and 100 atm. (b) Different water/CO₂ ratios at 263.15 K and 100 atm. (c) Different confining pressures with a water/CO₂ ratio of about 5.98 at 263.15 K. (d) Different temperatures with a water/CO₂ ratio of about 5.98 at 100 atm.

Figure S2. Radial distribution function (RDF) of amorphous CO₂ hydrates with a water/CO₂ ratio of about 5.98 at 263.15 K and 100 atm. (a)-(c) Sample #01 of the six prepared samples at different relaxation states. (d)-(f) Sample #02 of the six prepared samples at different relaxation states.

Figure S3. N-Hbond-DOP order parameter of amorphous CO₂ hydrates. (a) Different samples with a water/CO₂ ratio of about 5.98 at 263.15 K and 100 atm. (b) Different water/ CO₂ ratios at 263.15 K and 100 atm. (c) Different confining pressures with a water/CO₂ ratio of about 5.98 at 263.15 K. (d) Different temperatures with a water/CO₂ ratio of about 5.98 at 100 atm.

Figure S4. N-CO₂-DOP order parameter of amorphous CO₂ hydrates. (a) Different samples with a water/CO₂ ratio of about 5.98 at 263.15 K and 100 atm. (b) Different water/ CO₂ ratios at 263.15 K and 100 atm. (c) Different confining pressures with a water/CO₂ ratio of about 5.98 at 263.15 K. (d) Different temperatures with a water/CO₂ ratio of about 5.98 at 100 atm.

Figure S5. Mechanical properties of six different amorphous CO₂ hydrate samples with a water/CO₂ ratio of about 5.98 at 263.15 K and 100 atm. (a) Tension loads. (b) Compression loads.

Figure S6. DOP order parameter of amorphous CO₂ hydrates with a water/CO₂ ratio of about 5.98 at 263.15 K and 100 atm. (a) N-Hbond-DOP order parameter under tension. (b) N-CO₂-DOP order parameter under tension. (c) N-Hbond-DOP order parameter under compression. (d) N-CO₂-DOP order parameter under compression.

Figure S7. Molecular structures of CO₂ molecules in amorphous CO₂ hydrates with a water/CO₂ ratio of about 5.98 at 283.15 K and 100 atm. (a)-(d) Perspective views of CO₂ molecules in amorphous CO₂ hydrates at different relaxation times. (e)-(h) Perspective views of CO₂ molecules in amorphous CO₂ hydrates at different tensile strains. In Figure S7, some CO₂ molecules are rendered by yellow to monitor the formation of CO₂ nanobubble.

Movies S1-S3

Movies S1-S3. Visualization of amorphous CO_2 hydrates under tension. S1: A sample with a water/ CO_2 ratio of 12.07 at 263.15 K and 100 atm. S2: A sample with a water/ CO_2 ratio of 5.98 at 263.15 K and 700 atm. S3: A sample with a water/ CO_2 ratio of 5.98 at 203.15 K and 100 atm. All water structures are colored by the potential energy. Carbon and Oxygen atoms in CO_2 molecules are colored with grey and white, respectively. Hydrogen atoms in water molecules are not shown for clarity.

Movies S4-S6

Movies S4-S6. Visualization of amorphous CO_2 hydrates under compression. S1: A sample with a water/CO₂ ratio of 12.07 at 263.15 K and 100 atm. S2: A sample with a water/CO₂ ratio of 5.98 at 263.15 K and 700 atm. S3: A sample with a water/CO₂ ratio of 5.98 at 203.15 K and 100 atm. All water structures are colored by the potential energy. Carbon and Oxygen atoms in CO_2 molecules are colored with grey and white, respectively. Hydrogen atoms in water molecules are not shown for clarity.

Movies S7-S8

Movies S7-S8. Visualization of CO₂ molecules in amorphous CO₂ hydrates with a water/CO₂ ratio of 5.98 at 283.15 K and 100 atm. S7: A sample at relaxation process. S8: A sample under tension loads. Carbon and Oxygen atoms in CO₂ molecules are colored with grey and white, respectively. Water molecules are not shown for clarity. In Movies S7-S8, some CO₂ molecules are rendered by yellow to monitor the formation of CO₂ nanobubble.