Supplementary Information

First-principles studies of enhanced oxygen reduction reactions on graphene- and nitrogen-doped graphenecoated platinum surfaces

Ho Ngoc Nam, *a,b Quan Manh Phung, c,d Pongpol Choeichom, a

Yusuke Yamauchi,^{b,e,f} Nagahiro Saito^{*a,g}

^aInstitute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

^bDepartment of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464–8603, Japan

^cDepartment of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

^dInstitute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

^eAustralian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia

^fDepartment of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea

^gDepartment of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan

*Email: <u>honam@sp.material.nagoya-u.ac.jp</u> (HNN); <u>hiro@sp.material.osaka-u.ac.jp</u> (NS)

Figure S1: The calculated electron localization function (ELF) between Pt and C atoms of (a) Pt(100)@C and (b) Pt(110)@C systems (where blue regions represent no bonding feature while red regions represent electron pairing with covalent bond feature). The covalent bonds between nearest atoms are denoted by σ . Accordingly, the strong localized electrons observed between C-C atoms as evidence of covalent bonds. Similarly, there are pretty high localized electron regions observed between Pt-C atoms, which indicates some character of the covalent bond between Pt-C even though its strength is weaker as compared to C-C bonds.

Fig. S2: Free energy diagram at $U_{\text{RHE}} = 0$ V of ORR on Pt(100), Pt(110), Pt(111), and corresponding graphene-coated surfaces, involving *O-*OH (in black) or *OOH (in red).

In Figure S2, we show the free energy diagram at $U_{\rm RHE} = 0$ V of ORR on Pt(100), Pt(110), Pt(111), and respective graphene-coated surfaces. A consistent observation is the systematic instability of the *OOH intermediate compared to *O-*OH by a minimum of 1.0 eV. Let us assume that all mechanisms involve only *OOH. The oxygen reduction reaction (ORR) on Pt(100) and Pt(110) would be highly inefficient due to the endergonic nature of the first hydrogenation reaction to *OOH. On Pt(111) surface, the first hydrogenation step is predicted to be the rate-determining step (RDS). At an electrode potential of 1.23 V, the activation free energy of this step is 0.90 eV.

On Pt(100)@C and Pt(110)@C, the reaction is downhill at zero electrode potential. This indicates that these graphene-coated surfaces should be significantly more reactive than the corresponding bare Pt surfaces. On Pt(100)@C, the first hydrogenation (*O₂ to *OOH) and the last hydrogenation (*OH to H₂O) steps have near identical activation free energies (1.03 eV). They are both considered the RDS. The Pt(110)@C surface has an activation free energy of 0.82 eV for the last hydrogenation step. On the Pt(111)@C surface, the last hydrogenation step is the RDS, with an activation free energy of 0.71 eV. Again, in comparison to the Pt(111) surface, Pt(111)@C is marginally more reactive.

In summary, assuming the *OOH intermediate and considering the RDS activation free energy, the catalytic activity is ranked as $Pt(111)@C > Pt(110)@C \approx Pt(111) \approx Pt(100)@C \gg Pt(100) > Pt(110)$.

Fig. S3: Free energy diagram of ORR on Pt(100), Pt(110), and Pt(111) at different electrode potentials: $U_{\text{RHE}} = 0$ V (black line), $U_{\text{RHE}} = 1.23$ V (red line), and limiting potential U_{L} . *O-*OH is the intermediate.

In Figure S3, we show the free energy diagram of ORR on Pt(100), Pt(110), and Pt(111) at different electrode potentials: $U_{\text{RHE}} = 0$ V, 1.23 V, and U_{L} . Here, *O-*OH is the intermediate. Comparing Figure S3 and Figure 6(b) enables a clear distinction between the bare Pt surfaces and Pt@C surfaces.

Table S1: The calculated data of electronic energy (E_{elec}) , zero-point energy correction (E_{ZPE}) , vibrational heat capacity (C_p) , and adsorbate entropy (S) at T = 298.15 K from DFT method is collected for all considered systems, including Pt(100), Pt(110), Pt(111), Pt(100)@C, Pt(110)@C, Pt(111)@C, Pt(111)@C/N, and isolated gas. The substrate is denoted as *, where species are adsorbed.

Pt(100)					
Intermediates	$E_{elec} \left(\mathrm{eV} \right)$	$E_{\rm ZPE}~({\rm eV})$	$C_p~(\mathrm{eV})$	TS (eV)	G (eV)
*	-508386.3516				-508386.3516
O_2^*	-509517.3709	0.139	0.069	0.156	-509517.3189
HOO*	-509533.4633	0.407	0.061	0.121	-509533.1163
O*-HO*	-509535.7969	0.427	0.064	0.103	-509535.4089
HO*-HO*	-509552.8716	0.758	0.080	0.135	-509552.1686
HO*	-508969.4489	0.358	0.045	0.081	-508969.1270
		Pt(110)			
Intermediates	$E_{elec} \left(\mathrm{eV} \right)$	$E_{\rm ZPE}~({\rm eV})$	$C_p~({ m eV})$	TS (eV)	G (eV)
*	-508376.7283				-508376.7283
O_2^*	-509508.0503	0.133	0.049	0.097	-509507.9653
HOO*	-509523.8521	0.420	0.054	0.102	-509523.4801
O*-HO*	-509524.8314	0.380	0.069	0.171	-509524.5534
HO*-HO*	-509542.5405	0.673	0.069	0.133	-509541.9315
HO*	-508960.0638	0.353	0.048	0.088	-508959.7508
Pt(111)					
Intermediates	$E_{elec} \left(\mathrm{eV} \right)$	$E_{\rm ZPE}~({ m eV})$	$C_p~(\mathrm{eV})$	TS (eV)	G (eV)
*	-457553.4876				-457553.4876
O_2^*	-458683.9862	0.148	0.063	0.111	-458683.8862
HOO*	-458700.4599	0.415	0.074	0.143	-458700.1139
O*-HO*	-458701.8402	0.402	0.092	0.174	-458701.5202
HO*-HO*	-458718.7104	0.693	0.108	0.213	-458718.1224
HO*	-458136.0043	0.316	0.050	0.107	-458135.7453
Pt(100)@C					
Intermediates	$E_{elec} \left(\mathrm{eV} ight)$	$E_{\rm ZPE}~({\rm eV})$	$C_p~({ m eV})$	TS (eV)	G (eV)
*	-514404.2707				-514404.2707
O_2^*	-515535.0904	0.184	0.047	0.076	-515534.9354
HOO*	-515551.4077	0.458	0.083	0.166	-515551.0327

O*-HO*	-515553.3823	0.464	0.049	0.076	-515552.9453	
HO*-HO*	-515570.4868	0.809	0.063	0.097	-515569.7118	
HO*	-514987.7247	0.391	0.041	0.067	-514987.3597	
Pt(110)@C						
Intermediates	$E_{elec} \left(\mathrm{eV} \right)$	$E_{\rm ZPE}~({\rm eV})$	$C_p \; (\mathrm{eV})$	TS (eV)	G (eV)	
*	-516404.5780				-516404.5780	
O_2^*	-517534.9622	0.186	0.047	0.076	-517534.8052	
HOO*	-517552.0013	0.451	0.062	0.107	-517551.5953	
O*-HO*	-517553.1459	0.456	0.05	0.078	-517552.7179	
HO*-HO*	-517570.1855	0.789	0.076	0.126	-517569.4465	
HO*	-516987.8275	0.389	0.043	0.069	-516987.4645	
Pt(111)@C						
Intermediates	$E_{elec} \left(\mathrm{eV} \right)$	$E_{\rm ZPE}~({\rm eV})$	$C_p \; (\mathrm{eV})$	TS (eV)	G (eV)	
*	-462064.4389				-462064.4389	
O_2^*	-463194.5585	0.181	0.048	0.077	-463194.4065	
HOO*	-463211.7332	0.461	0.082	0.174	-463211.3642	
O*-HO*	-463213.2392	0.468	0.050	0.078	-463212.7992	
HO*-HO*	-463229.8776	0.789	0.076	0.129	-463229.1416	
HO*	-462647.5811	0.394	0.041	0.066	-462647.2121	
Pt(111)@C/N						
Intermediates	$E_{elec} \left(\mathrm{eV} \right)$	$E_{\rm ZPE}~({\rm eV})$	$C_p~(\mathrm{eV})$	TS (eV)	G (eV)	
*	-462196.4021				-462196.4021	
O_2^*	-463326.5289	0.146	0.070	0.144	-463326.4569	
HOO*	-463343.8115	0.466	0.079	0.147	-463343.4135	
O*	-462762.4885	0.092	0.027	0.044	-462762.4135	
HO*	-462779.1639	0.386	0.044	0.073	-462778.8069	
Isolated gas						
Gas	$E_{elec} \left(\mathrm{eV} \right)$	$E_{\rm ZPE}~({\rm eV})$	$C_p~({ m eV})$	TS (eV)	G (eV)	
H_2	-31.749223	0.267	0.091	0.403	-31.7952	
$H_2O(l)$	-599.18683	0.564	0.104	0.670	-599.1898	
O ₂					-1129.8692	

The details procedure of applied potential on the Gibbs free energy difference could be approximated by:

$$\Delta G_U = \Delta G - neU$$

where n is the number of electrons transferred in each reaction step, e is the electron's elementary charge, and U is the applied electrode potential. Specifically, the applied potential to Gibbs free energy of reaction steps with the corresponding number of electrons transferred is as follows:

Steps	Intermediates	Number of electrons transferred (n)
(i)	$G_{ m O2}+2G_{ m H2}$ – $2G_{ m H2O}$ – neU	4
(ii)	$G_{ m ^{*O2}} + 2G_{ m H2} - (2G_{ m H2O} +G_{ m ^{*}}) - neU$	4
(iii-a)	$G_{ m ^{*O-^{*}OH}} + 3/2G_{ m H2} - (2G_{ m H2O} + G_{ m ^{*}}) - neU$	3
(iii-b)	$G_{ m *OOH}+3/2G_{ m H2}-\left(2G_{ m H2O}+G_{ m *} ight)-neU$	3
(iv-a)	$G_{ m ^{*OH-^{*}OH}} + G_{ m H2} - (2G_{ m H2O} + G_{ m ^{*}}) - neU$	2
(iv-b)	$G_{ m *O} + ~G_{ m H2} - (G_{ m H2O} + ~G_{ m *}) - ~neU$	2
(v)	$G_{ m *OH}+1/2G_{ m H2}-(G_{ m H2O}+G_{ m *})-neU$	1
(vi)	$G_{ m H2O}+~G^{*}-~(G_{ m H2O}+~G^{*})-~neU$	0