Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Rich essential properties of silicon-substituted graphene nanoribbons: A comprehensive computational study

D.M.Hoat^{1,2}, Vo Khuong Dien^{3,4}, Quoc Duy Ho⁵, Dang Phuc Dam⁶, Nguyen Thanh Tien⁶, and Duy Khanh Nguyen^{7,8,*}

¹Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100000, Viet Nam

²Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam

³Division of Applied Physics, Dong Nai Technology University, Bien Hoa City, Vietnam; Email: <u>vokhuongdien@dntu.edu.vn</u>

⁴Faculty of Engineering, Dong Nai Technology University, Bien Hoa City, Vietnam

⁵Department of Mathematics and Physics, Universitetet i Stavanger, Stavanger, Norway

⁶Department of Physics, College of Natural Sciences, Can Tho University, Can Tho City 900000, Vietnam

⁷Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam

⁸Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam

*Corresponding author at: Van Lang University, Ho Chi Minh City, Vietnam; Email: khanh.nguyenduy@vlu.edu.vn

Table S1: bandgap (eV), magnetic moment (µB), and magnetism of the 6AGNR
configurations

GNR	Configuration	Bandgap	Magnetic	Magnetism
		$E_{g}(eV)$	moment (μ_B)	
	Pristine N6	PBE: 0.91	0	nonmagnetic
				semiconductor
	(1Si) _{edge}	PBE: 0.84	0	nonmagnetic
				semiconductor
6AGNR	(2Si) _{meta}	PBE: 1.16	0	nonmagnetic
				semiconductor
	(2Si) _{para}	PBE: 0.22	0	nonmagnetic
				semiconductor
	(6Si)/100% Si	PBE: 2.36	0	nonmagnetic
				semiconductor

GNR	Configuration	Bandgap	Magnetic	Magnetism
		$E_{g}(eV)$	moment (μ_B)	
	Pristine N8	PBE: 0.43	0	nonmagnetic
				semiconductor
	(1Si) _{edge}	PBE: 0.41	0	nonmagnetic
				semiconductor
8AGNR	(2Si) _{meta}	PBE: 0.52	0	nonmagnetic
				semiconductor
	(2Si) _{para}	PBE: 0.54	0	nonmagnetic
	-			semiconductor
	(8Si)/100% Si	PBE: 2.28	0	nonmagnetic
				semiconductor

Table S2: bandgap (eV), magnetic moment (μB), and magnetism of the 8AGNR configurations

Table S3: bandgap (eV), magnetic moment (µB), and magnetism of the pristine and single Sisubstituted 7AGNRs under (2x1x1) supercells

Configuration	Bandgap	Magnetic	Magnetism
	$E_{g}(eV)$	moment (μ_B)	
Pristine 7AGNR supercell	PBE: 1.57	0	nonmagnetic semiconductor
$(1Si)_{edge}$ (2x1x1) supercell	PBE: 1.46	0	nonmagnetic semiconductor
$(1Si)_{non-edge}(2x1x1)$ supercell	PBE: 1.27	0	nonmagnetic semiconductor

Table S4: Magnetic energies of the pristine 6ZGNR configuration (configuration 1), including the antiferromagnetic (AFM), ferromagnetic (FM), and nonmagnetic (NM).

Configuration 1	AFM	FM	NM
Energy	-117.050	-117.039	-116.981

Table S5: Magnetic energies of the (1Si)edge-substituted 6ZGNR configuration (configuration 2), including the antiferromagnetic (AFM), ferromagnetic (FM), and nonmagnetic (NM).

Configuration 2	AFM	FM	NM
Energy	-110.039	-110.054	-110.019

Table S6: Magnetic energies of the (1Si)non-edge-substituted 6ZGNR configuration (configuration 3), including the antiferromagnetic (AFM), ferromagnetic (FM), and nonmagnetic (NM).

Configuration 3	AFM	FM	NM
Energy	-110.080	-110.089	-110.046

Table S7: Magnetic energies of the (6Si)-substituted 6ZGNR configuration (configuration 4)

Configuration 4	AFM	FM	NM
energy	-90.140	-90.148	-90.118

Figure S1: (a) orbital-projected and (b) total band structures of 7AGNRs under (2x1x1) supercell; atom-dominated band structures of (c) single Si edge- and (d) single Si non-edge-substituted AGNRs under (2x1x1) supercell. The green, blue, and magenta stars are responsible for the C-2s, C-2p_{xy}, and C-2p_z orbitals, while the green and orange circles display the carbon and silicon dominations, respectively.

Figure S2: Orbital-projected density of states of (a) single Si non-edge- (b) double Si ortho-, and (c) double Si para-substituted 7AGNR configurations, in which the black and red circles display the termination of $C-2p_z$ and $C-2p_{xy}$ orbitals, respectively.