— Supplementary Information —

Thermoelectric Properties of $Bi_{1-x}Pb_xCu_{1-x}SeO$

Oxyselenides

Aleksandra Khanina,^{*,†} Andrei Novitskii,[‡] Daria Pashkova,[‡] Andrei Voronin,[†] Takao Mori,^{‡,¶} and Vladimir Khovaylo^{*,†,§}

[†]Academic Research Center for Energy Efficiency, National University of Science and Technology MISIS, Leninsky Av. 4, Moscow, 119049, Russia.

‡International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

¶Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.

§Belgorod State University, Pobedy St. 85, Belgorod, 308015, Russia.

E-mail: khanina.as@misis.ru; khovaylo@misis.ru

Energy-Dispersive X-ray Spectroscopy (EDS)

Nominal composition	(Bi + Pb):Cu:Se	\mathbf{Pb}
BiCuSeO	$1.04{:}1.00{:}0.96$	0
$\mathrm{Bi}_{0.98}\mathrm{Pb}_{0.02}\mathrm{Cu}_{0.98}\mathrm{SeO}$	$1.01{:}0.99{:}0.98$	0.01
$\mathrm{Bi}_{0.94}\mathrm{Pb}_{0.06}\mathrm{Cu}_{0.94}\mathrm{SeO}$	$1.06{:}0.94{:}0.95$	0.06
${ m Bi}_{0.92}{ m Pb}_{0.08}{ m Cu}_{0.92}{ m SeO}$	$1.02{:}0.94{:}0.96$	0.08

Table S1: Elemental ratios and Pb concentration obtained by EDS analysis for the $Bi_{1-x}Pb_xCu_{1-x}SeO$ (x = 0, 0.02, 0.06, and 0.08).

Weighted Mobility

Figure S1: (a) Temperature and (b) concentration dependencies of the weighted mobility μ_w for $\operatorname{Bi}_{1-x}\operatorname{Pb}_x\operatorname{Cu}_{1-x}\operatorname{SeO}(x=0,0.02,0.06,\operatorname{and} 0.08)$ samples. In (b), literature data for other $\operatorname{Bi}_{1-x}\operatorname{Pb}_x\operatorname{CuSeO}$ based oxyselenides are also shown for comparison (Chen et al.,¹ Gu et al.,^{2,3} Lan et al.,⁴ Lei et al.,⁵ Li et al.,⁶ Liang et al.,⁷ Liu et al.,⁸ Pan et al.,⁹ Ren et al.,^{10,11} Xu et al.,¹² Zhu et al.¹³); all displayed data points correspond to values obtained at 773 K.

Jonker Plot

Figure S2: Seebeck coefficient as a function of $\ln \sigma$ for $\operatorname{Bi}_{1-x}\operatorname{Pb}_x\operatorname{Cu}_{1-x}\operatorname{SeO}$ (x = 0, 0.02, 0.06, and 0.08) samples. Literature data for other $\operatorname{Bi}_{1-x}\operatorname{Pb}_x\operatorname{CuSeO}$ -based oxyselenides are also shown for comparison (Chen et al., ¹ Gu et al., ^{2,3} Lan et al., ⁴ Lei et al., ⁵ Li et al., ⁶ Liang et al., ⁷ Liu et al., ⁸ Pan et al., ⁹ Ren et al., ^{10,11} Xu et al., ¹² Zhu et al. ¹³). All displayed data points correspond to values obtained at 773 K. The dashed line is a guide for the eyes.

Power Factor

Figure S3: (a) Temperature and (b) concentration dependencies of the power factor $\alpha^2 \sigma$ for $\operatorname{Bi}_{1-x}\operatorname{Pb}_x\operatorname{Cu}_{1-x}\operatorname{SeO}(x=0,0.02,0.06,\operatorname{and} 0.08)$ samples. In (b), literature data for other $\operatorname{Bi}_{1-x}\operatorname{Pb}_x\operatorname{CuSeO}$ based oxyselenides are also shown for comparison (Chen et al.,¹ Gu et al.,^{2,3} Lan et al.,⁴ Lei et al.,⁵ Li et al.,⁶ Liang et al.,⁷ Liu et al.,⁸ Pan et al.,⁹ Ren et al.,^{10,11} Xu et al.,¹² Zhu et al.¹³); all displayed data points correspond to values obtained at 773 K.

Thermal Conductivity

Figure S4: (a) Temperature and (b) concentration dependencies of the total κ_{tot} , lattice κ_{lat} (solid symbols), and electronic κ_{el} (empty symbols) thermal conductivity for $\operatorname{Bi}_{1-x}\operatorname{Pb}_x\operatorname{Cu}_{1-x}\operatorname{SeO}$ (x = 0, 0.02, 0.06, and 0.08) samples. In (b), literature data for other $\operatorname{Bi}_{1-x}\operatorname{Pb}_x\operatorname{CuSeO}$ -based oxyselenides are also shown for comparison (Chen et al.,¹ Gu et al.,^{2,3} Lan et al.,⁴ Lei et al.,⁵ Li et al.,⁶ Liang et al.,⁷ Liu et al.,⁸ Pan et al.,⁹ Ren et al.,^{10,11} Xu et al.,¹² Zhu et al.¹³); all displayed data points correspond to values obtained at 773 K.

Lattice Thermal Conductivity

Figure S5: Temperature dependence of the lattice thermal conductivity κ_{lat} in a log–log scale for $\text{Bi}_{1-x}\text{Pb}_x\text{Cu}_{1-x}\text{SeO}$ (x = 0, 0.02, 0.06, and 0.08) samples.

Lattice Thermal Conductivity and Figure-of-Merit

Figure S6: (a) Lattice thermal conductivity κ_{lat} and (b) figure-of-metir zT as functions of $\ln\sigma$ for $\operatorname{Bi}_{1-x}\operatorname{Pb}_x\operatorname{Cu}_{1-x}\operatorname{SeO}(x=0,0.02,0.06,\operatorname{and} 0.08)$ samples. In (b), literature data for other $\operatorname{Bi}_{1-x}\operatorname{Pb}_x\operatorname{CuSeO}$ -based oxyselenides are also shown for comparison (Chen et al., ¹ Gu et al., ^{2,3} Lan et al., ⁴ Lei et al., ⁵ Li et al., ⁶ Liang et al., ⁷ Liu et al., ⁸ Pan et al., ⁹ Ren et al., ^{10,11} Xu et al., ¹² Zhu et al. ¹³); all displayed data points correspond to values obtained at 773 K.

References

- Chen, Y.-X.; Shi, K.-D.; Li, F.; Xu, X.; Ge, Z.-H.; He, J. Highly enhanced thermoelectric performance in BiCuSeO ceramics realized by Pb doping and introducing Cu deficiencies. *Journal of the American Ceramic Society* 2019, 102, 5989–5996.
- (2) Gu, Y.; Shi, X.-L.; Pan, L.; Liu, W.-D.; Sun, Q.; Tang, X.; Kou, L.-Z.; Liu, Q.-F.; Wang, Y.-F.; Chen, Z.-G. Rational electronic and structural designs advance BiCuSeO thermoelectrics. Advanced Functional Materials 2021, 31, 2101289.
- (3) Gu, Y.; Ai, W.; Pan, L.; Hu, X.; Zong, P.; Chen, C.; Lu, C.; Xu, Z.; Wang, Y. High thermoelectric performance of BiCuSeO via minimizing the electronegativity difference in Bi–O layer. *Materials Today Physics* 2022, 24, 100688.
- (4) Lan, J.-L.; Liu, Y.-C.; Zhan, B.; Lin, Y.-H.; Zhang, B.; Yuan, X.; Zhang, W.; Xu, W.; Nan, C.-W. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. *Advanced Materials* 2013, 25, 5086–5090.
- (5) Lei, Y.; Zheng, R.; Yang, H.; Li, Y.; Yong, C.; Jiang, X.; Liu, R.; Wan, R. Microwave synthesis combined with SPS sintering to fabricate Pb doped p-type BiCuSeO oxyselenides thermoelectric bulks in a few minutes. *Scripta Materialia* **2021**, *199*, 113885.
- (6) Li, F.; Zheng, Z.; Chang, Y.; Ruan, M.; Ge, Z.; Chen, Y.; Fan, P. Synergetic tuning of the electrical and thermal transport properties via Pb/Ag dual doping in BiCuSeO. ACS applied materials & interfaces 2019, 11, 45737-45745.
- (7) Liang, X.; Xu, R.; Kong, M.; Wan, H.; Bai, W.; Dong, D.; Li, Q.; Xu, H.; Li, Z.; Ge, B.; others Raising the thermoelectric performance in Pb/In-codoped BiCuSeO by alleviating the contradiction between carrier mobility and lattice thermal conductivity. *Materials Today Physics* **2023**, *34*, 101084.
- (8) Liu, Y.-c.; Lan, J.-L.; Zhan, B.; Ding, J.; Liu, Y.; Lin, Y.-H.; Zhang, B.; Nan, C.-w. Thermoelectric Properties of Pb-Doped BiCuSeO Ceramics. *Journal of the American Ceramic Society* 2013, 96, 2710– 2713.
- (9) Pan, L.; Lang, Y.; Zhao, L.; Berardan, D.; Amzallag, E.; Xu, C.; Gu, Y.; Chen, C.; Zhao, L.-D.; Shen, X.; others Realization of n-type and enhanced thermoelectric performance of p-type BiCuSeO by controlled iron incorporation. *Journal of Materials Chemistry A* 2018, *6*, 13340–13349.

- (10) Ren, G.-K.; Butt, S.; Ventura, K. J.; Lin, Y.-H.; Nan, C.-W.; others Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. *RSC advances* 2015, 5, 69878– 69885.
- (11) Ren, G.-K.; Wang, S.; Zhou, Z.; Li, X.; Yang, J.; Zhang, W.; Lin, Y.-H.; Yang, J.; Nan, C.-W. Complex electronic structure and compositing effect in high performance thermoelectric BiCuSeO. *Nature communications* **2019**, *10*, 2814.
- (12) Xu, R.; Chen, Z.; Li, Q.; Yang, X.; Wan, H.; Kong, M.; Bai, W.; Zhu, N.; Wang, R.; Song, J.; others Realizing Plain Optimization of the Thermoelectric Properties in BiCuSeO Oxide via Self-Substitution-Induced Lattice Dislocations. *Research* **2023**, *6*, 0123.
- (13) Zhu, H.; Li, Z.; Zhao, C.; Li, X.; Yang, J.; Xiao, C.; Xie, Y. Efficient interlayer charge release for high-performance layered thermoelectrics. *National Science Review* **2021**, *8*, nwaa085.