Supporting Information

Spin-polarized *p*-block Antimony/Bismuth Single-atom Catalysts on Defect-free

Rutile TiO₂(110) Substrate for High-efficient CO Oxidation

Jinlei Shi^{1,2}, Fengyuan Yang,² Xingju Zhao², Xiaoyan Ren², Yanan Tang^{1*} and Shunfang Li^{2*}

¹College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China ²School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China *Corresponding author. E-mail: yntang2010@163.com; E-mail: sflizzu@zzu.edu.cn **The file includes: Figure S1.** Pair interactions of two Sb(Bi) adatoms on the stoichiometric TiO₂(110).

Figure S2. Geometric structures, thermodynamic and kinetic properties for Bi single atom and the Bi-O₂ unit with a molecular O₂ adsorb on the Bi reactive site on defect-free $TiO_2(110)$.

Figure S3. CO oxidation on the SbO₂ species stabilized on the defect-free $TiO_2(110)$.

Figure S4. Possible MEP of CO oxidation on SbO₃ species on $TiO_2(110)$.

Figure S5. Local projected electronic density of states analysis of Sb₁, SbO₂, SbO₄, SbO₃ and SbO₃-O₂ species on $TiO_2(110)$.

Figure S6. MEP for CO oxidation on the BiO₄ *p*-SACs stabilized on the defect-free $TiO_2(110)$ substrate.

Figure S7. Schematic view of the MEP of O_2 dissociated of SbO₂ species on defect-free TiO₂(110) surface.

Figure S8. Oxidation states analysis of Sb(Bi)-SAC on defect-free TiO₂(110) surface.

Figure S9. Local projected electronic density of states analysis on $TiO_2(110)$ and $Sb_1/TiO_2(110)$.

Figure S10. Analysis of charge transfer between the SbOx system and TiO₂.

Table S1. The parameters of magnetic moments analysis for key steps of O_2 dissociation and CO oxidation on the Sb-*p*-SACs

Figure S1. Pair interactions of two Sb(Bi) adatoms on the stoichiometric $TiO_2(110)$. Energy profiles of two Sb or Bi adatoms on defect-free $TiO_2(110)$ substrate, as a function of Sb(Bi)-Sb(Bi) distance d(Sb(Bi)-Sb(Bi)), the red and green bars correspond to the Sb and Bi cases, respectively.

Figure S2. Geometric structures, thermodynamic and kinetic properties for Bi single atom and the Bi-O₂ unit with a molecular O₂ adsorb on the Bi reactive site on defect-free TiO₂(110). (a) Top and side view of the optimized most stable structure of Bi single atoms on defect-free rutile TiO₂(110) surface shown in ball and stick model. (b) Minimum energy path (MEP) for Bi diffusion along the oxygen bridging row. (c) Calculated relative adsorption energies of the O₂ molecule on the Bi/TiO₂(110) complex with different Bi-O₂ distance (d(Bi-O₂)) in c(8×2) supercell, the insert image on the left side refers to the side and top view of the most stable BiO₂ motif. (d) MEP for BiO₂ motif diffusion on TiO₂(110), the initial state, transition state and final state are labeled as IS, TS and FS, respectively.

Figure S3. CO oxidation on the SbO₂ species stabilized on the defect-free $TiO_2(110)$. The adsorbed O₂ molecule attacked by the incoming CO and release a CO₂ molecule.

Figure S4. Possible MEP of CO oxidation on SbO₃ species on defect-free TiO₂(110) substrate. (a) CO attacking the remained O atom of SbO₃ species on the substrate. (b) CO oxidation by attacking the protruding O atom of the adsorbed O_2 in SbO₃-O₂ species. (c) CO attacking the remained O atom in SbO₃-O₂ species on defect-free TiO₂(110) substrate.

Figure S5. Local projected electronic density of states (LPDOS) analysis. (a) LPDOS of Sb/TiO₂(110). (b) LPDOS of SbO₂ species on TiO₂(110). (c) LPDOS of SbO₄ motif on TiO₂(110). (d) LPDOS of SbO₃ species on TiO₂(110). (e) LPDOS of SbO₃-O₂ species on TiO₂(110).

Figure S6. MEP for CO oxidation on the $BiO_4 p$ -SACs stabilized on the defect-free TiO₂(110) substrate.

Figure S7. Schematic view of the MEP of O_2 dissociated of SbO₂ species on defect-free TiO₂(110) surface.

Here, the bond length change of O-O and Sb-O during the O_2 dissociation are displayed. Additionally, the optimized coordinates of the structures of O_2 dissociation on the Sb/TiO₂(110) complex.

The optimized coordinates of IS state are as below:

Ti	0	Sb						
1.0								
		11.8360	004425		0.0000000	00	0.	0000000000
		0.0000	000000	1	3. 18612766	27	0.	0000000000
		0.0000	000000		0.0000000	00	27.	4730949402
,	Ti	0 5	Sb					
(64	130	1					
Dir	ect							
	0.	9264755	525	0.54	4925094		0.45096	3795
	0.	9259768	372	0.04	15937024		0.44819	8676
	0.	8005462	288	0.79	94900417		0.43847	2569
	0.	8005642	289	0.29	95366347		0.43698	8056
	0.	6807116	687	0.54	15323968		0.44884	6132
	0.	6759271	.62	0.04	6942100		0.44836	5331
	0.	5511208	377	0.79	6560526		0.43759	4950
	0.	5488865	538	0.29	8211008		0.44171	6909
	0.	4256050)59	0.54	19167633		0.43447	9713
	0.	4258585	587	0.04	6301719		0.44775	5069
	0.	3005470)34	0.79	96653688		0.43759	3758
	0.	3029112	282	0.29	8004031		0.44164	0735
	0.	1705566	605	0.54	15471489		0.44945	1149
	0.	1757639	980	0.04	16953898		0.44814	6671
	0.	0509713	352	0.79	94503152		0.43833	4793
	0.	0511424	136	0.29	95875877		0.43686	7476
	0.	8021363	862	0.54	15754969		0.32346	9609
	0.	8012925	539	0.04	15838229		0.32370	3468

0.551759541	0.546493113	0.319912195
0.550952911	0.045617986	0.323702186
0.298352957	0.546401918	0.320021063
0.300433367	0.045643941	0.323626339
0.050757367	0.545917749	0.322992325
0.050791569	0.045812085	0.323607475
0.925543547	0.795259058	0.318967402
0.925536811	0.296287119	0.317529261
0.676250458	0.796353817	0.318334192
0.673673213	0.295145780	0.318757296
0. 425922453	0.796374083	0.318198830
0.425960869	0.295559555	0.321448326
0.175865576	0.795748174	0.318238467
0.178533852	0.295871288	0.318691671
0.925742924	0.545547366	0.197687998
0.925742924	0.045547336	0.197687998
0.800742924	0.795547366	0.197687998
0.800742924	0.295547336	0.197687998
0.675742924	0.545547366	0.197687998
0.675742924	0.045547336	0.197687998
0.550742924	0.795547366	0.197687998
0.550742924	0.295547336	0.197687998
0. 425742894	0.545547366	0.197687998
0. 425742894	0.045547336	0.197687998
0. 300742894	0.795547366	0.197687998
0. 300742894	0.295547336	0.197687998
0.175742909	0.545547366	0.197687998
0.175742909	0.045547336	0.197687998
0.050742902	0.795547366	0.197687998
0.050742902	0.295547336	0.197687998
0.925742924	0.795547366	0.077696726
0.925742924	0.295547336	0.077696726
0.800742924	0.545547366	0.077696726
0.800742924	0.045547336	0.077696726
0.675742924	0.795547366	0.077696726
0.675742924	0.295547336	0.077696726
0.550742924	0.545547366	0.077696726
0.550742924	0.045547336	0.077696726
0. 425742894	0.795547366	0.077696726
0. 425742894	0.295547336	0.077696726
0.300742894	0.545547366	0.077696726
0.300742894	0.045547336	0.077696726
0.175742909	0.795547366	0.077696726
0.175742909	0.295547336	0.077696726

0.050742902	0.545547366	0.077696726
0.050742902	0.045547336	0.077696726
0.797948778	0.545753479	0.493465304
0.801133633	0.045481477	0.490662038
0.537116885	0.535880506	0.491810620
0.550365031	0.047126364	0.490373254
0.315328658	0.535928547	0.492118716
0.301227063	0.047167096	0.490256310
0.052997679	0.545697153	0.494299263
0.050846722	0.045469407	0.490621120
0.925969660	0.888572514	0.449085861
0.925544143	0.700676382	0.451486230
0.925602794	0.390469313	0.450453818
0.926072776	0.202134341	0.448614925
0.676199138	0.889191508	0.449650645
0.673711300	0.700527191	0.452368587
0.677086771	0.392464876	0.449021429
0.676067948	0.203169391	0.449599743
0.425857872	0.888502836	0.450893998
0.425917804	0.700132608	0.447899342
0.425843835	0.397668034	0.432029992
0.426062942	0.200844690	0.443027675
0.175107718	0.889240563	0.449093074
0.177944347	0.700760901	0.452934504
0.174825802	0.392385125	0.449488968
0.175387070	0.203162685	0.449136913
0.800496042	0.547172368	0.398145705
0.800691843	0.045956094	0.394987524
0.557709694	0.554190695	0.394195348
0.551809788	0.042368967	0.394795984
0.293611795	0.554409325	0.394649357
0.300206393	0.042457249	0.394712597
0.051153671	0.547236085	0.399585187
0.050859854	0.045971520	0.394965887
0.799295247	0.795743346	0.369556934
0.800531507	0.294378519	0.368468165
0.551155686	0.795878470	0.368731856
0.554438412	0.293630958	0.368968099
0.301411390	0.796936274	0.368825495
0.298299968	0.292328149	0.369065046
0.051519416	0.793428898	0.369337320
0.050403621	0.296738058	0.368275970
0.925789475	0.946199775	0.321025044
0.919207931	0.647932649	0.321770489

0.919141769	0.444162399	0.321685314
0.925831497	0.144535735	0.320263505
0.676145494	0.946123183	0.320237696
0.676057398	0.645381749	0.319595218
0.675195158	0.447683513	0.320849955
0.675934851	0.143955410	0.320056558
0.426073194	0.946144760	0.320103794
0.426626742	0.645362020	0.320168227
0. 426678389	0.448504329	0.321998835
0.426098734	0.143960759	0.320971429
0.175362363	0.946289241	0.320286244
0.181249559	0.648665965	0.319440275
0.182239786	0.444396198	0.320874065
0.175547466	0.143874198	0.320079833
0.800769389	0.796935380	0.272868961
0.799658239	0.294993132	0.272483706
0.551069558	0.795573115	0.272736579
0.549260855	0.296484739	0.273231030
0.301730692	0.797063828	0.272576869
0.303575099	0.295140833	0.273100197
0.049927291	0.795164108	0.272979349
0.051194150	0.296836078	0.272608161
0.800742924	0.545547366	0.244532660
0.800742924	0.045547336	0.244532660
0.550742924	0.545547366	0.244532660
0.550742924	0.045547336	0.244532660
0. 300742894	0.545547366	0.244532660
0. 300742894	0.045547336	0.244532660
0.050742902	0.545547366	0.244532660
0.050742902	0.045547336	0.244532660
0.925742924	0.893147469	0.197687998
0.925742924	0.697947204	0.197687998
0.925742924	0.393147469	0.197687998
0.925742924	0.197947204	0.197687998
0.675742924	0.893147469	0.197687998
0.675742924	0.697947204	0.197687998
0.675742924	0.393147469	0.197687998
0.675742924	0.197947204	0.197687998
0. 425742894	0.893147469	0.197687998
0. 425742894	0.697947204	0.197687998
0. 425742894	0.393147469	0.197687998
0. 425742894	0.197947204	0.197687998
0.175742909	0.893147469	0.197687998
0.175742909	0.697947204	0.197687998

0.175742909	0.393147469	0.197687998
0.175742909	0.197947204	0.197687998
0.800742924	0.545547366	0.150843352
0.800742924	0.045547336	0.150843352
0.550742924	0.545547366	0.150843352
0.550742924	0.045547336	0.150843352
0.300742894	0.545547366	0.150843352
0.300742894	0.045547336	0.150843352
0.050742902	0.545547366	0.150843352
0.050742902	0.045547336	0.150843352
0.800742924	0.795547366	0.124541380
0.800742924	0.295547336	0.124541380
0.550742924	0.795547366	0.124541380
0.550742924	0.295547336	0.124541380
0. 300742894	0.795547366	0.124541380
0.300742894	0.295547336	0.124541380
0.050742902	0.795547366	0.124541380
0.050742902	0.295547336	0.124541380
0.925742924	0.947947204	0.077696726
0.925742924	0.643147469	0.077696726
0.925742924	0.447947204	0.077696726
0.925742924	0.143147469	0.077696726
0.675742924	0.947947204	0.077696726
0.675742924	0.643147469	0.077696726
0.675742924	0.447947204	0.077696726
0.675742924	0.143147469	0.077696726
0. 425742894	0.947947204	0.077696726
0. 425742894	0.643147469	0.077696726
0. 425742894	0.447947204	0.077696726
0. 425742894	0.143147469	0.077696726
0.175742909	0.947947204	0.077696726
0.175742909	0.643147469	0.077696726
0.175742909	0.447947204	0.077696726
0.175742909	0.143147469	0.077696726
0.800742924	0.795547366	0.030852064
0.800742924	0.295547336	0.030852064
0.550742924	0.795547366	0.030852064
0.550742924	0.295547336	0.030852064
0.300742894	0.795547366	0.030852064
0.300742894	0.295547336	0.030852064
0.050742902	0.795547366	0.030852064
0.050742902	0.295547336	0.030852064
0.362184435	0.323853284	0.516202807
0.490298122	0.323805571	0.516136467

```
0.426329046
```

```
0. 469491422 0. 538757920
```

The optimized coordinates of TS state are as below:

Ti	0	Sb)		
1.	0				
		11.83	360004425	0.000000000	0.000000000
		0.00	00000000	13.1861276627	0.000000000
		0.00	00000000	0.000000000	27.4730949402
	Ti	0	Sb		
	64	130	1		
Di	rect				
	0	. 92582	22079	0.545014977	0.450258732
	0	. 92588	30790	0.046096418	0.448115766
	0	. 80061	7576	0.794916809	0.438495338
	0	. 80061	9006	0.295610756	0.436811924
	0	. 68013	34356	0.545517683	0.448636413
	0	. 67589	02115	0.047075558	0.448236585
	0	. 55109	93817	0.796588421	0. 437644392
	0	. 54888	37610	0.298425317	0.442572206
	0	. 42578	35005	0.549080610	0.434282452
	0	. 42586	62700	0.046592318	0.447533846
	0	. 30053	38301	0.796655953	0.437634259
	0	. 30291	3517	0.298334360	0.442599952
	0	. 17154	6176	0.545587957	0.448906034
	0	. 17574	40510	0.047099996	0.448084921
	0	. 05098	34040	0.794654787	0.438418895
	0	. 05112	29490	0.295929879	0.436736614
	0	. 80085	56650	0.545885086	0.322857648
	0	. 80086	6663	0.045837935	0.323430836
	0	. 55186	62776	0.546647310	0.319380760
	0	. 55095	58097	0.045634083	0.323425710
	0	. 29981	6340	0.546655774	0.319471538
	0	. 30081	.8473	0.045682471	0.323394716
	0	. 05074	1516	0.545919180	0.322845280
	0	. 05079	93096	0.045836817	0.323397845
	0	. 92579	97045	0.796362460	0.318994284
	0	. 92584	10199	0.295109928	0.317370623
	0	. 67622	29835	0.796760380	0.318375438
	0	. 67316	50136	0.294844151	0.318828285
	0	. 42594	17517	0.796788812	0.318269730
	0	. 42596	64415	0.295344740	0.322070837
	0	. 17553	80910	0.796769083	0.318340868
	0	. 17867	2612	0.294868171	0.318807155

0.925742924	0.545547366	0.197687998
0.925742924	0.045547336	0.197687998
0.800742924	0.795547366	0.197687998
0.800742924	0.295547336	0.197687998
0.675742924	0.545547366	0.197687998
0.675742924	0.045547336	0.197687998
0.550742924	0.795547366	0.197687998
0.550742924	0.295547336	0.197687998
0.425742894	0.545547366	0.197687998
0.425742894	0.045547336	0.197687998
0.300742894	0.795547366	0.197687998
0.300742894	0.295547336	0.197687998
0.175742909	0.545547366	0.197687998
0.175742909	0.045547336	0.197687998
0.050742902	0.795547366	0.197687998
0.050742902	0.295547336	0.197687998
0.925742924	0.795547366	0.077696726
0.925742924	0.295547336	0.077696726
0.800742924	0.545547366	0.077696726
0.800742924	0.045547336	0.077696726
0.675742924	0.795547366	0.077696726
0.675742924	0.295547336	0.077696726
0.550742924	0.545547366	0.077696726
0.550742924	0.045547336	0.077696726
0.425742894	0.795547366	0.077696726
0. 425742894	0.295547336	0.077696726
0.300742894	0.545547366	0.077696726
0.300742894	0.045547336	0.077696726
0.175742909	0.795547366	0.077696726
0.175742909	0.295547336	0.077696726
0.050742902	0.545547366	0.077696726
0.050742902	0.045547336	0.077696726
0.798503160	0.545872271	0.493024975
0.801094115	0.045371424	0.490574360
0.536988080	0.535782635	0.491410166
0.550274432	0.047201186	0.490228772
0.314995021	0.535892308	0.491577119
0.301280200	0.047219787	0.490133286
0.052959114	0.545857131	0.493157387
0.050779030	0.045356974	0.490526289
0.925921440	0.888641894	0.448993772
0.925690830	0.700570226	0.451321959
0.925727427	0.390843093	0.450076103
0.925999284	0.202308238	0.448546022

0.676287413	0.889277756	0.449426472
0.673810661	0.700537980	0.452422887
0.677700996	0.393006772	0.448663384
0.676447451	0.203314468	0.449590743
0.425785482	0.888653696	0.450637430
0. 425819159	0.700140834	0.447832108
0.425771683	0.397913128	0.431429684
0.425924838	0.200884059	0.442246109
0.175165996	0.889340520	0.448985517
0.177878723	0.700654030	0.452815145
0.174132437	0.393024862	0.448976666
0.175127104	0.203320384	0.449253470
0.800576329	0.547594070	0.397560894
0.800776362	0.046089802	0.394809037
0.558012068	0.554835916	0.393898308
0.551934659	0.042283360	0.394621938
0.293384612	0.554979682	0.394046187
0.299925923	0.042366616	0.394522995
0.051289357	0.547645271	0.397556901
0.050813075	0.046104144	0.394760698
0.800129414	0.794484556	0.369416147
0.801400483	0.295563996	0.368192077
0.551180243	0.795514047	0.368737102
0.554828584	0.294036686	0.369063437
0.300620139	0.795734644	0.368716031
0.297054023	0.293716699	0.369037330
0.051488318	0.793415248	0.369353354
0.050272550	0.296630710	0.368137658
0.925871491	0.945965707	0.320998073
0.925714791	0.644649267	0.321530163
0.925744772	0.447625726	0.321621060
0.925886989	0.144801676	0.320135176
0.676310360	0.946034193	0.320248365
0.677003384	0.645400882	0.319488168
0.676045656	0. 447849423	0.320855230
0.676072061	0.144080013	0.319961697
0.425894350	0.946058393	0.320144653
0. 425822854	0.645372152	0.320069313
0. 425827444	0.448807120	0.321997255
0. 425926834	0.144145757	0.320956081
0.175239339	0.946006954	0.320267081
0.174614891	0.645269096	0.319400102
0.175531775	0.448008418	0.320861310
0.175468698	0.144136682	0.319959879

0.801621139	0.795943379	0.273153633
0.800379694	0.296226621	0.272800326
0.551043272	0.795388103	0.272905976
0.548872769	0.296851277	0.273520440
0.300780922	0.795877039	0.272912771
0.302987456	0.296458840	0.273519635
0.049979903	0.795317948	0.273171514
0.051287033	0.296893090	0.272813171
0.800742924	0.545547366	0.244532660
0.800742924	0.045547336	0.244532660
0.550742924	0.545547366	0.244532660
0.550742924	0.045547336	0.244532660
0.300742894	0.545547366	0.244532660
0.300742894	0.045547336	0.244532660
0.050742902	0.545547366	0.244532660
0.050742902	0.045547336	0.244532660
0.925742924	0.893147469	0.197687998
0.925742924	0.697947204	0.197687998
0.925742924	0.393147469	0.197687998
0.925742924	0.197947204	0.197687998
0.675742924	0.893147469	0.197687998
0.675742924	0.697947204	0.197687998
0.675742924	0.393147469	0.197687998
0.675742924	0.197947204	0.197687998
0.425742894	0.893147469	0.197687998
0.425742894	0.697947204	0.197687998
0.425742894	0.393147469	0.197687998
0.425742894	0.197947204	0.197687998
0.175742909	0.893147469	0.197687998
0.175742909	0.697947204	0.197687998
0.175742909	0.393147469	0.197687998
0.175742909	0.197947204	0.197687998
0.800742924	0.545547366	0.150843352
0.800742924	0.045547336	0.150843352
0.550742924	0.545547366	0.150843352
0.550742924	0.045547336	0.150843352
0.300742894	0.545547366	0.150843352
0. 300742894	0.045547336	0.150843352
0.050742902	0.545547366	0.150843352
0.050742902	0.045547336	0.150843352
0.800742924	0.795547366	0.124541380
0.800742924	0.295547336	0.124541380
0.550742924	0.795547366	0.124541380
0.550742924	0.295547336	0.124541380

0.300742894	0.795547366	0.124541380
0.300742894	0.295547336	0.124541380
0.050742902	0.795547366	0.124541380
0.050742902	0.295547336	0.124541380
0.925742924	0.947947204	0.077696726
0.925742924	0.643147469	0.077696726
0.925742924	0.447947204	0.077696726
0.925742924	0.143147469	0.077696726
0.675742924	0.947947204	0.077696726
0.675742924	0.643147469	0.077696726
0.675742924	0.447947204	0.077696726
0.675742924	0.143147469	0.077696726
0.425742894	0.947947204	0.077696726
0.425742894	0.643147469	0.077696726
0.425742894	0.447947204	0.077696726
0.425742894	0.143147469	0.077696726
0.175742909	0.947947204	0.077696726
0.175742909	0.643147469	0.077696726
0.175742909	0.447947204	0.077696726
0.175742909	0.143147469	0.077696726
0.800742924	0.795547366	0.030852064
0.800742924	0.295547336	0.030852064
0.550742924	0.795547366	0.030852064
0.550742924	0.295547336	0.030852064
0.300742894	0.795547366	0.030852064
0.300742894	0.295547336	0.030852064
0.050742902	0.795547366	0.030852064
0.050742902	0.295547336	0.030852064
0.357934982	0.323898613	0.515647709
0. 494240910	0.323861659	0.515619338
0.426210463	0.466500998	0.538203001

The optimized coordinates of FS state are as below:

Ti	0		Sb								
1.0											
		11.	83	60004	4425		0.	00000	00000	0.000000000)
		0.	00	00000	0000		13.	18612	76627	0.000000000)
		0.	00	00000	0000		0.	00000	00000	27.4730949402	2
T	i	()	Sb							
64	4	130)	1							
Dire	ct										
	0.	925	580	0979		(). 5459	996428		0.449146330	
	0.	925	581	3735		(0.0474	415335		0.448245466	

0.800455630	0.795728207	0.438114226
0.800967634	0.296462476	0.435232013
0.677803516	0.546513259	0.448355228
0.676062763	0.048843805	0.448343992
0.550759852	0.798183918	0.437510043
0.550235212	0.300479501	0.446630031
0.425762504	0.549789548	0.436525345
0.425868303	0.050188113	0.447859913
0.300721526	0.798227310	0.437517077
0.301469028	0.300446182	0.446716636
0.173812404	0.546474278	0.448405892
0.175600991	0.048860963	0.448333114
0.051022857	0.795758128	0.438126445
0.050776992	0.296436727	0.435285479
0.800818026	0.546727002	0.323698103
0.800799370	0.046429627	0.323880851
0.551590085	0.547319233	0.320728034
0.550843000	0.046498403	0.324038625
0.299919456	0.547275901	0.320718646
0.300821006	0.046484776	0.324039519
0.050662406	0.546708405	0.323728055
0.050843418	0.046447996	0.323874325
0.925818980	0.796747208	0.318679571
0.925745606	0.295653701	0.316137224
0.676104665	0.797104716	0.318204641
0.671306252	0.295669883	0.318873972
0.425828487	0.797213316	0.318138868
0.425708473	0.296087325	0.323190928
0.175551236	0.797083139	0.318219751
0.180136234	0.295665413	0.318882644
0.925742924	0.545547366	0.197687998
0.925742924	0.045547336	0.197687998
0.800742924	0.795547366	0.197687998
0.800742924	0.295547336	0.197687998
0.675742924	0.545547366	0.197687998
0.675742924	0.045547336	0.197687998
0.550742924	0.795547366	0.197687998
0.550742924	0.295547336	0.197687998
0. 425742894	0.545547366	0.197687998
0. 425742894	0.045547336	0.197687998
0.300742894	0.795547366	0.197687998
0.300742894	0.295547336	0.197687998
0.175742909	0.545547366	0.197687998
0.175742909	0.045547336	0.197687998

0.050742902	0.795547366	0.197687998
0.050742902	0.295547336	0.197687998
0.925742924	0.795547366	0.077696726
0.925742924	0.295547336	0.077696726
0.800742924	0.545547366	0.077696726
0.800742924	0.045547336	0.077696726
0.675742924	0.795547366	0.077696726
0.675742924	0.295547336	0.077696726
0.550742924	0.545547366	0.077696726
0.550742924	0.045547336	0.077696726
0.425742894	0.795547366	0.077696726
0.425742894	0.295547336	0.077696726
0.300742894	0.545547366	0.077696726
0.300742894	0.045547336	0.077696726
0.175742909	0.795547366	0.077696726
0.175742909	0.295547336	0.077696726
0.050742902	0.545547366	0.077696726
0.050742902	0.045547336	0.077696726
0.798643231	0.545923173	0.491682440
0.801196814	0.045294974	0.490599453
0.538159728	0.535671532	0.489882499
0.550792456	0.047712609	0.490267694
0.313508272	0.535590351	0.489915460
0.300874472	0.047674548	0.490270883
0.052933697	0.545998275	0.491698384
0.050465345	0.045254171	0.490588158
0.925732672	0.889815152	0.448033839
0.925746322	0.702175736	0.451235205
0.925845325	0.392202705	0.447690934
0.925831556	0.202792436	0.447911322
0.676447749	0.890820384	0.448255599
0.673658133	0.702431202	0.452208668
0.680831611	0.395505488	0.442964047
0.678644657	0.203911319	0.448826224
0.425744772	0.891069233	0.449357957
0.425703526	0.702545524	0.448336124
0. 425794244	0.398174405	0.433090329
0. 425839514	0.202811912	0.444330454
0.175009549	0.890856862	0.448250592
0.177843139	0.702455938	0.452233642
0.170931950	0.395465434	0.443134964
0.173070103	0.203887209	0.448953658
0.800868034	0.551889122	0.396178156
0.800980270	0.046924777	0.394570857

0.556667268	0.557320595	0.393142253
0.551740706	0.044582158	0.394573510
0.294824213	0.557217121	0.393150270
0.299902737	0.044616625	0.394572169
0.050742496	0.551793575	0.396206677
0.050712369	0.047069702	0.394568264
0.800297678	0.793902040	0.368753344
0.802333176	0.294836730	0.366530895
0.551041782	0.795315385	0.368239462
0.554190636	0.294429123	0.368444383
0.300550908	0.795346022	0.368247002
0.297326535	0.294421792	0.368459225
0.051274240	0.793860257	0.368765324
0.049253259	0.294826955	0.366580635
0.925799370	0.946195900	0.320856690
0.925730109	0.645623088	0.320053488
0.925722361	0.448376566	0.321245044
0.925784051	0.144631952	0.319075197
0.676186264	0.946287036	0.320321321
0.676902890	0.646180034	0.318444073
0.676146269	0.448999137	0.320691794
0.676060557	0.144101322	0.319376916
0.425789118	0.946353197	0.320284665
0.425726712	0.646281362	0.318798542
0.425741464	0.450003892	0.321750700
0. 425779283	0.144032151	0.320464134
0.175378114	0.946271718	0.320353508
0.174576938	0.646165133	0.318483174
0.175281972	0.448986828	0.320676297
0.175515562	0.144091815	0.319365889
0.801465750	0.796603143	0.272625029
0.799607813	0.297226876	0.271817029
0.550966442	0.796459138	0.272446156
0.548421443	0.297371268	0.272844374
0.300660908	0.796460807	0.272454739
0.303093493	0.297362089	0.272843182
0.050146502	0.796597719	0.272636205
0.051880717	0.297206193	0.271835625
0.800742924	0.545547366	0.244532660
0.800742924	0.045547336	0.244532660
0.550742924	0.545547366	0.244532660
0.550742924	0.045547336	0.244532660
0.300742894	0.545547366	0.244532660
0.300742894	0.045547336	0.244532660

0.050742902	0.545547366	0.244532660
0.050742902	0.045547336	0.244532660
0.925742924	0.893147469	0.197687998
0.925742924	0.697947204	0.197687998
0.925742924	0.393147469	0.197687998
0.925742924	0.197947204	0.197687998
0.675742924	0.893147469	0.197687998
0.675742924	0.697947204	0.197687998
0.675742924	0.393147469	0.197687998
0.675742924	0.197947204	0.197687998
0. 425742894	0.893147469	0.197687998
0. 425742894	0.697947204	0.197687998
0. 425742894	0.393147469	0.197687998
0. 425742894	0.197947204	0.197687998
0.175742909	0.893147469	0.197687998
0.175742909	0.697947204	0.197687998
0.175742909	0.393147469	0.197687998
0.175742909	0.197947204	0.197687998
0.800742924	0.545547366	0.150843352
0.800742924	0.045547336	0.150843352
0.550742924	0.545547366	0.150843352
0.550742924	0.045547336	0.150843352
0. 300742894	0.545547366	0.150843352
0. 300742894	0.045547336	0.150843352
0.050742902	0.545547366	0.150843352
0.050742902	0.045547336	0.150843352
0.800742924	0.795547366	0.124541380
0.800742924	0.295547336	0.124541380
0.550742924	0.795547366	0.124541380
0.550742924	0.295547336	0.124541380
0. 300742894	0.795547366	0.124541380
0. 300742894	0.295547336	0.124541380
0.050742902	0.795547366	0.124541380
0.050742902	0.295547336	0.124541380
0.925742924	0.947947204	0.077696726
0.925742924	0.643147469	0.077696726
0.925742924	0.447947204	0.077696726
0.925742924	0.143147469	0.077696726
0.675742924	0.947947204	0.077696726
0.675742924	0.643147469	0.077696726
0.675742924	0.447947204	0.077696726
0.675742924	0.143147469	0.077696726
0. 425742894	0.947947204	0.077696726
0.425742894	0.643147469	0.077696726

0.425742894	0.447947204	0.077696726
0.425742894	0.143147469	0.077696726
0.175742909	0.947947204	0.077696726
0.175742909	0.643147469	0.077696726
0.175742909	0.447947204	0.077696726
0.175742909	0.143147469	0.077696726
0.800742924	0.795547366	0.030852064
0.800742924	0.295547336	0.030852064
0.550742924	0.795547366	0.030852064
0.550742924	0.295547336	0.030852064
0.300742894	0.795547366	0.030852064
0.300742894	0.295547336	0.030852064
0.050742902	0.795547366	0.030852064
0.050742902	0.295547336	0.030852064
0.318941355	0.331587672	0.515278697
0.533328652	0.331774503	0.515200615
0.426007181	0.443626314	0.536619782

Figure S8. The oxidation state of Sb reactive site in (a) Sb_1 , (b) SbO_2 motif, (c) SbO_3 , (d) SbO_3 -O₂, and SbO_4 species on $TiO_2(110)$. (f)-(g) show the oxidation states of Bi reactive site in Bi₁, BiO₂, BiO₃, BiO₃-O₂, and BiO₄ species on $TiO_2(110)$, respectively.

Figure S9. Local projected electronic density of states (LPDOS) analysis on (a) $TiO_2(110)$. (b) $Sb_1/TiO_2(110)$.

Fig. S10. Analysis of charge transfer between the SbOx system and TiO₂ (a)-(e) Side view of differential charge density of Sb₁/TiO₂(110), SbO₂ motifs, SbO₄, SbO₃, and SbO₃-O₂ species on TiO₂(110), respectively, with an isosurface value of 3×10^{-3} e/Å³. Yellow and blue bubbles represent charge accumulation and depletion, respectively. (f)-(g) The oxidation state analysis including Sb reactive site and adsorbed O₂ in Sb₁, SbO₂ motif, SbO₄, SbO₃, and SbO₃-O₂ species on TiO₂(110), respectively.

First, we note that, in Sb₁/TiO₂(110) complex (see Fig. S10(a) and (f)), the Sb single atom donate about 1.23 |e| to the substrate, with about 0.4 |e| is accommodated by the nearby subsurface Ti (Ti_{sub}) atoms, as schematically donated by the arrow. As a consequence, there emerges a spin-polarized *d*-orbital state at about 0.95 eV below the Fermi level, see Fig. S5(a). In the optimized SbO₂/TiO₂(110) complex (see Fig. S10(b) and (g)), the aforementioned Ti_{sub} atom donates about 0.21 |e| back to the adsorbed O₂ molecule, i.e., leaving 0.19 |e| maintained on the Ti_{sub}, as reflected by the significantly reduced spin-polarized LPDOS at around 0.24 eV below the Fermi level, see Fig. S5(b). For the case of SbO₄ shown in Fig. S10 (c) and (h), the two O atoms dissociated from the adsorbed O₂ molecule capture more electrons from the substrate, by about 0.62 |e|, with the Ti_{sub} atom donating the remained 0.19 |e|, correspondingly, there is already no LPDOS observed on the Ti_{sub} within the band gap, see Fig. S5(c).

For the case of SbO₃ species shown in Fig. S10(d) and (i), the left O atom is only charged by about 1.04 |e|, that is, relative to the case of SbO₄, about 0.74 |e| is back donated to the substrate, correspondingly, there emerge again a new LPDOS of the Ti_{sub} at around 0.24 eV below Fermi level, see Fig. S5(d).

Moreover, in the case of SbO₃-O₂ species on TiO₂(110) (see Fig. S10 (e) and (j)), relative to the case of SbO₃, about 0.57 |e| is further transferred to the adsorbed O₂, mainly by the Ti_{sub}. As a consequence, the LPDOS of the Ti_{sub} within the band gap disappears, see Fig. S5(e).

Table. S1 The parameters of magnetic moments analysis for key steps of O_2 dissociation and CO oxidation on the Sb-*p*-SACs, the corresponding key step structures are also shown in (i)-(vii). The data include magnetic moments projected on different species, i.e., Sb, substrate Ti and O_{sub} , adsorbed O_2 , and the CO molecule of the systems during the key cycle steps of O_2 activation and CO oxidation.

	-	Megnetic moments (µ _B)					
Steps	i	ii	iii	iv	v	vi	vii
Sb	0.00	0.00	-0.011	0.004	0.00	0.00	0.023
02	0.00	0.19	0.967	0.459	0.00	0.965	0.148
Ti	0.91	0.86	-0.017	-0.061	0.909	-0.017	0.005
C/O	\	١	١	0.147/0.043	١	\setminus	0.515/0.295
O _{sub}	0.09	-0.05	0.061	0.408	0.091	0.048	0.014
Total	1.0	1.0	1.0	1.0	1.0	1.0	1.0

