Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supplementary Information Isomer-specific photofragmentation of $C_3H_3^+$ at the carbon K-edge

Simon Reinwardt,^a Patrick Cieslik,^a Ticia Buhr, ^b Alexander Perry-Sassmannshausen,^b Stefan Schippers,^b Alfred Müller,^b Florian Trinter,^c and Michael Martins^{*a}

April 2024

 ^a Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
^b I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Leihgesterner Weg 217, 35292 Gießen, Germany
^c Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
[†]Corresponding author: michael.martins@uni-hamburg.de

1 Geometry-optimized ground states

1.1 $c-C_3H_3^+$ symmetry: D_{3h}

H3	Bond	Length [Å]	Start-Vertex-End	Angle [°]
Π	C1-C2	1.345	C1-C2-C3	60.0
C3	C2-C3	1.345	C2-C1-C3	60.0
	C1-C3	1.345	C1-C3-C2	60.0
C2	C1-H1	1.070	C2-C1-H1	150.0
	C2-H2	1.070	C3-C1-H1	150.0
H2 H1	C3-H3	1.070	C1-C2-H2	150.0
			C3-C2-H2	150.0
			C1-C3-H3	150.0
			C2-C3-H3	150.0

 $1.2 \quad [H_2C-C-CH]^+ \ symmetry: \ C_{2\mathbf{v}}$

\mathbb{Q}^{H1}	Bond	Length [Å]	Start-Vertex-End	Angle [°]
ССОнз	C1-C2	1.339	C1-C2-C3	180.0
	C2-C3	1.206	C2-C3-H3	180.0
C1 $C2$ $C3$	C1-H1	1.078	C2-C1-H1	120.4
U H2	C1-H2	1.078	C2-C1-H2	120.4
	C3-H3	1.065	H1-C1-H2	119.1

1.3
$$[H_3C-C-C]^+$$
 symmetry: C_{3v}

$H_1 \cap O^{H_3} \cap O^{H_3}$	Bond	Length [Å]	Start-Vertex-End	Angle [°]
C C	C1-C2	1.436	C1-C2-C3	180.0
C_1 C_2 C_3	C2-C3	1.332	C2-C1-H1	108.8
	C1-H1	1.088	C2-C1-H2	108.8
н2 💭	C1-H2	1.088	C2-C1-H3	108.8
	C1-H3	1.088	H1-C1-H2	110.2
			H1-C1-H3	110.2
			H2-C1-H3	110.2

2 Calculated spectra using the BLYP and PBE functionals

Figure 1: The effect of a particular functional on the calculated spectra is illustrated by a new calculation with BLYP. The differences in the spectra caused by the various functionals are only small.

Figure 2: The calculated spectra using the PBE functional. As already mentioned in the caption of the Fig. 1, the differences are only small.