Supporting Information

Achieving high-capacity aqueous supercapacitors via anion-doped construction of dual redox centers in Ni_xCo_{1-x}SeO₃

Tao Li, Jinyue Song, Hongguang Fan, Yanpeng Wang, Yusheng Luo, Chenchen Shao, Qingping Li and Wei Liu*

School of Materials Science and Engineering, Ocean University of China, Qingdao 266100,People's Republic of China. E-mail: weiliu@ouc.edu.cn (W. Liu)

Fig. S1 SEM of (a) CC (b)NiCC. (c)The cross-section image and element distribution pictures of the NCSeO-NCl-NiCC composite.

Fig. S2 N1s High-resolution XPS spectra of NCSeO-N-NiCC samples.

Fig. S3 CV curves of (a) NCSeO-Cl-NiCC (b) NCSeO-N-NiCC (c)NCSeO-NCl-NiCC at different scan rates from 5 to 50 mV s⁻¹ .(d) voltage drops under high current densities of different electrodes. (e) The percentage of capacitive/diffusion-controlled contribution to the charge storage of NCSeO-Cl-NiCC electrode at different scan

rates.

Fig. S4 GCD curve of NCSeO-NCl-NiCC, NCSeO-Cl-NiCC and NCSeO-N-NiCC electrode at 1 mA cm⁻² current density.

Material	Electrochemical performance	Ref
NiCo ₂ O ₄	70.7 mAh g ⁻¹ , 1.5 A g ⁻¹ ()	1
NiO/Co ₃ O ₄ /rGO	108 mAh g ⁻¹ , 2 A g ⁻¹ (5000, 92%)	2
N-NiCoO-2	131.6 mAh g ⁻¹ , 1 A g ⁻¹ (5000, 93.3%)	3
NiCo-LDH	272.5 mAh g ⁻¹ , 1 A g ⁻¹ (3000, 73.3%)	4
NiCo-LDH-PMB/CC	298.6 mAh g ⁻¹ , 1 A g ⁻¹ ()	5
NiCoSe/G-10	117 mAh g ⁻¹ , 1 A g ⁻¹ (5000, 84.2%)	6
NiSe/CoSe/Ni ₃ Se ₂	185.1 mAh g ⁻¹ , 0.5 A g ⁻¹ (5000, 85.2%)	7
NiSe ₂ @CNT	136.2 mAh g ⁻¹ , 1 A g ⁻¹ (9000 82%)	8
NCSeO-NCI-NiCC	417 mAh g ⁻¹ , 1 A g ⁻¹ (7000, 98.4%)	This
		work

Table S1. Comparision of electrochemical performance of NCSeO-NCI-NiCC

 electrodes with NiCo-Oxides and NiCo-Selenides reported in the literature.

Fig. S5 The crystal structure of (a) NCSeO-NCI-NiCC-1, (b) NCSeO-NCI-NiCC-2. (The grey, red, pink, blue and purple balls are Ni, O, H, N and Cl atoms, respectively.)

Fig. S6 After 300 cycles SEM images of (a) NCSeO-Cl-NiCC.(b) NCSeO-NCl-

NiCC.

Fig. S7 Cl atomic percents in NCSeO-NCl-NiCC in different state.

Reference

- Y. Y. Kannangara, S. Karunarathne, W. P. S. L. Wijesinghe, C. Sandaruwan, C. R. Ratwani, A. R. Kamali and A. M. Abdelkader, *J. Energy Storage*, 2024, 84.
- R. Kumar, R. Thangappan, F. Ran, S. Sambasivam, M. D. Albaqami and S. Mohammad, J. Energy Storage, 2024, 85.
- 3. Y. Li, Y. Shan and H. Pang, Chin. Chem. Lett., 2020, 31, 2280-2286.
- X. Zhang, W. Lu, Y. Tian, S. Yang, Q. Zhang, D. Lei and Y. Zhao, *J. Colloid Interface Sci.*, 2022, 606, 1120-1127.
- W. Tang, J. Bai, P. Zhou, Q. He, F. Xiao, M. Zhao, P. Yang, L. Liao, Y. Wang, P. He, B. Jia and L. Bian, *Electrochim. Acta*, 2023, 439.
- 6. Y. Wang, F. Mo and X. Wu, J. Electroanal. Chem., 2022, 924.
- L. Zhu, X. Liu, W. Du, J. Fu, X. Yang, X. Chai, W. Guo, P. Shuang, Y. Zhang and Y. Zhang, Journal of Alloys and Compounds, 2022, 925.
- 8. Y. Zheng, Y. Tian, S. Sarwar, J. Luo and X. Zhang, Journal of Power Sources, 2020, 452.