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1 Renormalized OZ-HNC

1.1 Brief introduction

For a two component ionic system, denoted by indexes + and − respectively, the Ornstein-Zernike (OZ) equation
takes the following matrix form in k -space,1 with a hat symbol indicating the respective Fourier transformed
functions

Ĥ(k) = Ĉ(k) + Ĉ(k)ρĤ(k) (1)

where Ĥ and Ĉ denote 2× 2 matrices of total and direct correlation functions, defined as

Ĥ(k) =

[
ĥ++(k) ĥ−+(k)

ĥ+−(k) ĥ−−(k)

]
(2)

Ĉ(k) =

[
ĉ++(k) ĉ−+(k)
ĉ+−(k) ĉ−−(k)

]
(3)

and ρ describes the number densities via

ρ =

[
ρ+ 0
0 ρ−

]
(4)

Due to a symmetric system, the non-diagonal correlation functions are identical, with ĥ+−(k) = ĥ−+(k) and
ĉ+−(k) = ĉ−+(k). To ensure electroneutrality, the number densities are equal ρ+ = ρ−. The renormalisation
of the OZ equation is preceded by splitting the the long ranged Coulomb pair potential into a short and long
ranged potential (with i, j denoting + or -)

uij(r) = u
(s)
ij (r) + u

(l)
ij (r) (5)

where the short-ranged potential u
(s)
ij is defined as a hard sphere potential of the classical form

u
(s)
ij (r) = uHSij (r) =

{
∞; r < σij
0; r > σij

(6)

and u
(l)
ij denotes the long range potential, whose matrix form is denoted with the matrix ψ(r). We now move

onto defining Fourier transformed matrix elements of the renormalized OZ equation. By using the Fourier
transformed long range potential ψ̂(k), we define a short ranged total correlation matrix

Ĉ(s)(k) = Ĉ(k)− ψ̂(k) (7)

and the hypervertex function V̂ via
V̂−1(k) = ρ−1 − ψ̂(k) (8)
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used in the construction of the Q̂ and Ĥ(s) functions by

ρQ̂(k)ρ = V̂(k)− ρ (9)

Ĥ(s)(k) = Ĥ(k)− Q̂(k) (10)

For numerical simplicity, we define a new τ̂ function as

τ̂ (k) = Ĥ(s)(k)− Ĉ(s)(k) (11)

leading to the final renormalised form of the OZ equation, used in direct numerical iteration, eq. 12.

ρτ̂ (k)ρ = V̂(k)Ĉ(s)(k)
[
I− V̂(k)Ĉ(s)(k)

]−1
V̂(k)− ρĈ(s)(k)ρ (12)

The exact renormalised closure relation for the system, written in r -space, is defined via Eq.(14).

c
(s)
ij (r) = exp

[
−βu(s)ij (r) + τij(r) + qij(r) + Bij(r)

]
− 1− τij(r)− qij(r) (13)

For the HNC closure, the bridge graphs are set to equal zero, B(r) = 0, simplifying the closure to the following
form used in the numerical procedure, Eq.(14).

c
(s)
ij (r) = exp

[
−βu(s)ij (r) + τij(r) + qij(r)

]
− 1− τij(r)− qij(r) (14)

We define ψij as a Coulomb potential

ψij(r) = −zizj lB
r

(15)

and the corresponding qij potential as a screened Coulomb potential via

qij(r) = −zizj lB
exp (−κ−1D r)

r
(16)

with zi, zj denoting the nominal charge (1 or -1 used in this work), lB =
e20

4πε0εrkBT
the Bjerrum length, and κD

the Debye screening length, obtained via

κD =
√

4πlB(ρ+z2+ + ρ−z2−) (17)

The analytical form of the Fourier transformed screened Coulomb potential is used

q̂ij(k) = −4πzizj lB
k2 + κ2D

(18)

1.2 Numerical implementation

For the numerical solution of the coupled matrix equations, Eqs. (12) and (14), a direct iteration method via
Picard mixing was used. Real space discretization was achieved with 218 points at a 0.005 Å spacing interval, in
order to comply with the requirement of zeroth and second moments equalling zero (ensuring electroneutrality).
2–5

The initial τij(r) functions were initialised with 0 arrays, and the potential functions according to the

definitions. Via Eq.(14), the initial short range direct correlation functions c
(s)
ij (r) were computed. Both τij(r)

and c
(s)
ij (r) functions are Fourier transformed into corresponding τ̂ij(k) and ĉ

(s)
ij (k) functions. The renormalised

OZ equation, Eq.(12), is used to compute new τ̂ij(k) functions, which are then Fourier transformed back into
r -space and mixed with the previous iteration via the Picard mixing procedure. The mixed result is used to

compute new c
(s)
ij (r) functions via Eq.(14).

We define a cost function L used for the convergence criteria as

L = δr

√∑
i,j

(
τ ′ij(r)− τij(r)

)2
(19)

with δr defining the real space discretization spacing interval and the prime denoting the new iteration. We
impose a convergence criteria of L < 10−6.

Once convergence is achieved, we obtain the radial distribution functions with following relations

H(r) = τ (r) + C(s)(r) + Q(r) (20)

gij(r) = hij(r) + 1 (21)

and for calculating the direct correlation function, we use

C(r) = C(s)(r) +ψ(r) (22)
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1.3 Results

1.3.1 Comparison of MC and OZ-HNC

As can be seen from Figures 1 and 2, OZ-HNC quantitatively describes the radial distribution functions obtained
from MC results.

1.3.2 Extracting the screening lengths

We extracted the screening lengths with a linear fit on the ln [r∆g(r)] vs. r plots. Figure 3 presents the procedure
of extracting the κ values. The screening length was difficult to extract for higher concentrations (c > 1 M)
due to extensive curvature in the ln [r∆g(r)] data, thereby presenting a challenge to select the linear interval
appropriate for fitting a linear model. The underestimation of the screening lengths obtained via OZ-HNC in
comparison to the Widom method (presented in the main article) should therefore be explained as a statistical
error of fitting.

2 Statistical properties of standard and inverse Widom

Here, we briefly illustrate that the inverse Widom is computationally much more efficient than its standard
(insertion) counterpart, at least for systems with strong electrostatic coupling. In Figure 4, we compare results
from the two methods, for our low-dielectric system (εr = 11.04) and a concentration of 100mM. The displace-
ment (which actually helps for illustrative purposes) between the two sets of curves stem from the irrelevant
(for our purposes) excluded volume contribution. The inverse Widom method is clearly superior.

On the other hand, in systems with weak electrostatic coupling, the methods are essentially equivalent,
which is demonstrated in Figure 5, where we have removed the excluded volume contribution to the insertion
chemical potential, i.e. the curves are not shifted. The agreement suggests that either method works equally
well at “aqueous” conditions.

3 Comparing the decay of ∆g(r) and |∆g(r)|
In the scientific literature, one commonly finds long-range analyses of |∆g(r)|, rather than ∆g(r). An advantage
with the former is that it permits logarithmic fits, which of course is relevant for an assumed Yukawa tail.
However, we would argue that it is better to perform runnning averages of noisy data, and simply limit any fit
to a region in which ∆g(r) is positive. This is illustrated in Figure 6. Note how the running averages for ∆g(r)
and |∆g(r)| start to deviate at about 50 Å, which thus (roughly) marks the upper limit for appropriate analyses
of |∆g(r)|. On the other hand, the running average of ∆g(r) stays positive up to about twice this separation.
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Figure 1: Comparison of MC (empty circles) and OZ-HNC results (full lines) for the 3 Å system at five
concentrations.
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Figure 2: Comparison of MC (empty circles) and OZ-HNC results (full lines) for the 4 Å system at five
concentrations.
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Figure 3: Linear fits for extracting the screening length from the OZ-HNC results, with the linear fit depicted
by the dashed line.
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Figure 4: Comparing results from standard and inverse Widom, in a low-dielectric implicit solvent. Note that
the results are shifted, since the inverse method neglects excluded volume contributions. This shift is irrelevant
as we aim for the electrostatic screening length, which only requires the difference between slopes.
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Figure 5: Comparing results from standard and inverse Widom, at “aqueous” conditions. The hard-sphere
contribution has been subtracted from the standard Widom data.
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Figure 6: Comparing results for the long-ranged part of ∆g(r) and |∆g(r)|. Thick curves are running averages.
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