Electronic Supplementary Information for

Photoelectron Spectrum of the Pyridyl Radical

Emil Karaev,^a Marius Gerlach,^a Katharina Theil,^a Gustavo A. Garcia,^b Christian Alcaraz,^c Jean-Christophe Loison,^d and Ingo Fischer*^a

^{a.} Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany. E-mail: ingo.fischer@uni-wuerzburg.de.

^{b.} Synchrotron Soleil, L'Orme des Merisiers, St Aubin, B.P. 48, F-91192 Gif sur Yvette, France.

^{c.} Universite Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France

^{d.} ISM-CNRS, Universite de Bordeaux, 351 cours de la Liberation, F-33405 Talence, France

	Page
Calculated ionisation energies for the open shell isomers	S2
SPES of m/z = 78 from 9.5 – 10.2 eV	S3
Reference	S3

	Open shell isomer	$IE_{calc.}$ (S ₀ ⁺)/ eV	$IE_{calc.}(T_1^+)/eV$	
1		6.10	9.11 eV	
2		4.42	8.47	
3		no convergence	8.35	
4		6.45	8.98	
5		5.20	8.19	

Table S1: Calculated ionisation energies for the open shell isomers suggested by Liu et al.^[1]

Fig. S1: SPES of m/z = 78 from 9.5 - 10.2 eV. The IE of m-pyridyl, computed by CCSD(T) is given as a purple line. For comparison the computed IEs for transitions into the triplet cation of the open-chain isomers are given as black lines. A second band starting at 9.6 eV is most likely due to transitions into the triplet states of the pyridyl cations. Due to the close-lying ionization energies, an identification of further isomers in addition to *o*- and *p*-pyridyl is not possible.

Notes and references

[1]: R. Liu, T. T.-S. Huang, J. Tittle and D. Xia, J. Phys. Chem. A,2000, 104, 8368-8374.