SUPPORTING INFORMATION

Quantitative Kinetics Reveal that Reactions of HO₂ are a Significant Sink for Aldehydes in the Atmosphere and may Initiate the Formation of Highly Oxygenated Molecules via Autoxidation

Qiao Gao^a, Chuanyang Shen^b, Haofei Zhang*^b, Bo Long*^{a,c} Donald G. Truhlar^{d*}

^aSchool of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China

^bDepartment of Chemistry, University of California, Riverside, California, 92507, USA

^cCollege of Materials Science and Engineering, Guizhou Minzu university, Guiyang 550025, China

^dDepartment of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States

^dDepartment of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA

*Corresponding author emails: <u>wwwltcommon@sina.com (</u>Bo Long) <u>haofei.zhang@ucr.edu</u> (Haofei Zhang) truhlar@umn.edu (Donald G. Truhlar)

TABLE OF CONTENTS

Section S1. Computational details of high-pressure-limit rate coefficients	S-5
Section S2. Computational details of pressure-dependent rate coefficients	S-6
Table S1. Electronic structure methods and basis sets	S-7
Table S2. Standard scale factors applied to vibrational frequencies	S-8
Table S3. Specific reaction scale factors calculated by using the MPW1K/MG3S method for	
$HO_2 + C_5H_{11}CHO/C_4H_9CHO/C_3H_7CHO and H-shift reactions$	S-8
Table S4. Numbers of distinguishable structures and torsions	S-9
Table S5. Lennard-Jones parameters for the calculations of collision rates	S-12
Table S6. Mean unsigned deviations for the classical barrier heights and enthalpies of	
activation at 0 K (kcal/mol) for the HO ₂ reactions with C_5H_{11} CHO. C_4H_0 CHO.	
and C_3H_7CHO as calculated using various theoretical methods with the standard	
vibrational scale factors	S-13
Table S7. Mean unsigned deviations for the relative enthalpies at 0 K (in kcal/mol) for the	
H-shift reactions as calculated using various theoretical methods with the standard	
vibrational scale factors	S-14
Table S8. The tunneling and recrossing transmission coefficients, the torsional anharmonic	
factors, the HPL rate coefficients (cm ³ molecule ⁻¹ s ⁻¹), and activation energies	
(kcal/mol) for the $HO_2 + C_5H_{11}CHO$ (R1) reaction	S-15
Table S9. The tunneling and recrossing transmission coefficients, the torsional anharmonic	
factors, the HPL rate coefficients (cm ³ molecule ⁻¹ s ⁻¹), and activation energies	
(kcal/mol) for the HO_2 + C_4H_9CHO (R2) reaction	S-16
Table S10. The tunneling and recrossing transmission coefficients, the torsional anharmonic	
factors, the HPL rate coefficients (cm ³ molecule ⁻¹ s ⁻¹), and activation energies	
(kcal/mol) for the HO_2 + C_3H_7CHO (R3) reaction	S-17
Table S11. The tunneling and recrossing transmission coefficients, the torsional anharmonic	
factors, HPL rate coefficients (s ⁻¹), and activation energies (kcal/mol) for the M1A	
isomerism (R4) reaction	S-18
Table S12. The tunneling and recrossing transmission coefficients, the torsional anharmonic	
factors, HPL rate coefficients (s ⁻¹), and activation energies (kcal/mol) for the M1B	
isomerism (R5) reaction	S-19
Table S13. The tunneling and recrossing transmission coefficients, the torsional anharmonic	
factors, HPL rate coefficients (s ⁻¹), and activation energies (kcal/mol) for the M1C	a a c
isomerism (R6) reaction	S-20
Table S14. Fitting parameters for the high-pressure limit rate coefficients	S-21

Table S15.	The conventional transition state theory (TST) rate coefficients (cm ³ molecule ⁻¹ s ⁻¹) without a transmission coefficient for the HO ₂ + RCHO (X= C_5H_{11} C_4H_9 ,	
	and C_3H_7) reactions	S-21
Table S16.	The conventional transition state theory (TST) rate coefficients (s ⁻¹) without a transmission coefficient for the H-shift reactions	S-22
Table S17.	The falloff factor calculated by the SS-QRRK method and the ME/RRKM method for the $HO_2 + C_5H_{11}CHO/C_4H_9CHO/C_3H_7CHO$ reactions as functions of temperature at 1bar	S-23
Table S18A	A. Temperature–pressure dependent rate coefficient $k(T,P)$ (cm ³ molecule ⁻¹ s ⁻¹) of HO ₂ + C ₅ H ₁₁ CHO (R1) reaction as calculated by dual-level DL-MS- CVT/SCT /SS-QRRK	S-24
Table S18E	3. Temperature–pressure dependent rate coefficient $k(T,P)$ (cm ³ molecule ⁻¹ s ⁻¹) of HO ₂ + C ₅ H ₁₁ CHO (R1) reaction as calculated by the ME/RRKM method with the higher level of electronic structure (CCSD(T)-F12a/cc-PVTZ//M06-2X/MG3S)	S-25
Table S19A	A. Temperature–pressure dependent rate coefficient $k(T,P)$ (cm ³ molecule ⁻¹ s ⁻¹) of HO ₂ + C ₄ H ₉ CHO (R2) reaction as calculated by dual-level DL-MS-CVT/SCT /SS-QRRK	S-26
Table S19E	B. Temperature–pressure dependent rate coefficient $k(T,P)$ (cm ³ molecule ⁻¹ s ⁻¹) of HO ₂ + C ₄ H ₉ CHO (R2) reaction as calculated by the ME/RRKM with the higher level of electronic structure (CCSD(T)-F12a/cc-PVTZ//M06-2X/MG3S)	S-27
Table S20A	A. Temperature–pressure dependent rate coefficient $k(T,P)$ (cm ³ molecule ⁻¹ s ⁻¹) of HO ₂ + C ₃ H ₇ CHO (R3) reaction as calculated by dual-level DL-MS-CVT/SCT /SS-QRRK	S-28
Table S20E	B. Temperature–pressure dependent rate coefficient $k(T,P)$ (cm ³ molecule ⁻¹ s ⁻¹) of HO ₂ + C ₃ H ₇ CHO (R3) reaction as calculated by the ME/RRKM with the higher level of electronic structure (CCSD(T)-F12a/cc-pVTZ-F12//M06- 2X/MG3S)	S-29
Table S21.	NO_3 concentrations (molecules cm ⁻³), the rate coefficients (cm ³ molecule ⁻¹ s ⁻¹), and the atmospheric lifetimes (s) with respect to bimolecular reaction as functions of altitude	S-30
Table S22	Volatility estimation of the products from beyanal oxidation	S-30
Table S22.	Cartesian coordinates (Å) of the optimized geometries	S-31
Table S24.	Absolute energies in hartrees	S-40

Figure S1. Exemplified mass spectrum of (A) hexanal $+$ HO ₂ and (B) pentanal $+$ HO ₂ gas-	
phase products. In the insert of (A), mass spectrum is from ozonolysis of a-	
pinene + hexanal + methanol, where $C_6H_{14}O_3$ was present only with hexanal, but	
not with a-pinene only, indicative of the hexanal $+$ HO ₂ chemistry	S-43
Figure S2. The relative enthalpies of all the H-shift reactions of the adduct M1A ($C_6H_{13}O_5$)	
at the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard	
scale factor at 0 K	S-44
Figure S3. The relative enthalpies of all the H-shift reactions of the adduct M1B ($C_5H_{11}O_5$)	
at the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard	
scale factor at 0 K	S-45
Figure S4. The relative enthalpies of all the H-shift reactions of the adduct M1C ($C_4H_9O_5$) at	
the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard scale	
factor at 0 K	S-46
Figure S5. The relative enthalpies of all the H-shift reactions of the adduct C_3A ($C_6H_{13}O_5$) at	
the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard scale	
factor at 0 K	S-47
Figure S6. The relative enthalpies of all the H-shift reactions of the adduct M3A ($C_6H_{13}O_5$)	
at the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard	
scale factor at 0 K	S-48
Figure S7. The relative enthalpies of all the H-shift reactions of the adduct C5A ($C_6H_{13}O_7$)	
at the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard	
scale factor at 0 K	S-49
Input file for MESS for the bimolecular reaction of HO ₂ +C ₅ H ₁₁ CHO	S-50
Input file for MESS for the bimolecular reaction of HO ₂ +C ₄ H ₉ CHO	S-56
Input file for MESS for the bimolecular reaction of HO ₂ +C ₃ H ₇ CHO	S-61
References of the ESI	S-66

S1. Computational details of high-pressure-limit rate coefficients

Reactions R1–R3 are pressure dependent, and the first step in calculating their rate constants is to calculate their high-pressure-limit (HPL) rate constants. The single-state calculations of reaction rates for R1, R2, and R3 are mainly based on passage through transition states TS1A, TS1B, and TS1C, respectively. These are the lowest-energy transition structures for these reactions. Passage through higher-energy conformers of the transition states is accounted for in the multistructural torsional anharmonicity factor. We use a dual-level strategy in which the lower level (LL) is M11-L/MG3S, and the higher level (HL) is CCSD(T)-F12a/cc-pVTZ-F12/M06-2X/MG3S.

The HPL rate coefficients were calculated by the following formula:

$$k_{MS-CVT/SCT} = F_{fwd}^{MS-T} \kappa_{SS-SCT} \Gamma_{SS-CVT} k_{SS-TST}^{HL}$$
(S1)

where all quantities in this expression are functions of temperature, $k_{MS-CVT/SCT}(T)$ is the rate coefficient of dual-level multistructural canonical variational transition state theory with smallcurvature tunneling for the reaction from the conformational ensemble of bimolecular reagents to the conformational ensemble of transition states for this reaction, F_{fwd}^{MS-T} is the multistructural torsional anharmonicity factor, which includes the contributions from all the conformational structures of the reactants and the transition states, κ_{SS-SCT} is the tunneling coefficient calculated by using ground-state small-curvature tunneling for the lowest-energy transition state from the prereactive complex to the corresponding adduct, $\Gamma_{SS-CVT,TS1B}$ is the recrossing effect and is equal to $\kappa_{SS-CVT}/\kappa_{SS-TST}$ obtained by using single-structure canonical variational transition state theory without tunneling for the lowest-energy conformers, and k_{SS-TST} is the single-structure conventional transition state theory rate coefficient without tunneling for the lowest-energy conformers.

The HPL rate constants for reactions R4, R5, and R6 (the 1,7-H-shift reactions) are mainly based on passage through transition states TS2A, TS2B, and TS2C, respectively. These are the lowestenergy transition structure for these reactions. Passage through higher-energy conformers of the transition states is accounted for in the multistructural torsional anharmonicity factor. We again use a dual-level strategy in which the lower level (LL) is MN15-L/MG3S for R4-R6, and the higher level (HL) is CCSD(T)-F12a/cc-pVTZ-F12/M06-2X/MG3S. The HPL rate constants are again calculated by eq S1.

S2. Computational details of pressure-dependent rate coefficients

The pressure-dependent rate coefficients of the bimolecular reactions were computed in two ways – by the SS-QRRK^{1,2,1} method and by the master equation (ME/RRKM)²⁻³ method.

For the SS-QRRK calculations, F_E is computed based on the numerically integrated Whitten-Rabinovitch approximation.⁴ The collision efficiency is computed based on the exponential-down model⁵ (also called the Gilbert-Luther-Troe model⁶) with the energy-transfer-down parameter equal to 300 cm⁻¹. This model also requires Lennard-Jones (L-J) parameters, and the values we used are given in Table S4.

RRKM calculations require microcanonical rate coefficients, and these were obtained by Rice-Ramsperger-Kassel-Marcus (RRKM) theory⁷ with parameters obtained by CCSD(T)-F12a/cc-pVTZ-F12//M062X/MG3S for the HO₂ + C_5H_{11} CHO/ C_4H_9 CHO/ C_3H_7 CHO reactions.

Abbreviation	Explanation	Reference
	Coupled cluster theory with single and double	8
	excitations and quasiperturbative connected triples	
CCSD(T)-F12a	CCSD(T) with explicit correlation of type F12a	9,10
M06-2X	M06-2X hybrid meta GGA density functional	11
М11 Т	M11-L local meta generalized gradient approximation	12
IVIII-L	density functional	
MNI15 I	MN15-L local meta nonseparable gradient	13
IVIIN I J-L	approximation density functional	
A /Da	A calculation with electronic structure approximation A	
A/B"	and basis set B	
	A single-point energy calculation with method A/B at a	
A/B//C/D ^{b,c}	geometry optimized by method C/D and with	
	frequencies by method C/D.	
cc-nVT7-F12	A polarized valence-triple-zeta basis set for explicitly	14
cc-pv12-112	correlated calculations	
cc-nVD7-F12	A polarized valence-double-zeta basis set for explicitly	15
	correlated calculations	
MG3S	A minimally augmented polarized valence-triple-zeta	16
	basis set	
	A single-point energy calculation with method A/B at a	
A/B//C/D ^{b,c}	geometry optimized by method C/D and with	
	frequencies by method C/D.	
CC/TZ-F12//	abbreviation used in this article for	
	CCSD(T)-F2a/cc-pVTZ-F12//M06-2X/MG3S	
CC/DZ-F12//	abbreviation used in this article for	
	CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S	

Table S1. Electronic structure methods and basis sets

Methods Scale Factor 0.970 M06-2X/MG3S M11-L/MG3S 0.985 MN15-L/MG3S 0.977

Table S2. Standard scale factors applied to vibrational frequencies^{*a*}

^a The scale factors are calculated by the method in Alecu, I. M.; Zheng, J.; Zhao, Y.; Truhlar, D. G., Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. J. Chem. Theory Comput. 2010, 6, 2872-2887.

Table S3. Specific-reaction-parameter scale factors calculated by using the MPW1K/MG3S method for the HO₂ + C₅H₁₁CHO, HO₂ + C₄H₉CHO, HO₂ + C₃H₇CHO, and H-shift reactions ^{*a,b*}

	C ₆ H ₁₂ O	C ₅ H ₁₀ O	C ₄ H ₈ O	HO ₂	TS1A	TS1B	TS1C
λ^{Anh}	0.987 ^c	0.987 ^c	0.987 ^c	0.985	0.984	0.983	0.982
λ^{ZPE}	0.970 ^c	0.970 ^c	0.970 ^c	0.967	0.967	0.966	0.965
	M1A	M1B	M1C	TS2A	TS2B	TS2C	C1A, C1B, C1C
λ^{Anh}	0.986 ^c	0.987 ^c	0.987 ^c	0.986	0.985	0.985	0.986 ^c
λ^{ZPE}	0.970 ^c	0.970 ^c	0.970 ^c	0.968	0.967	0.967	0.970 ^c

 $a\lambda^{Anh}$ equals the ratio of anharmonic zero-point vibrational energy to harmonic zero-point vibrational energy of the MPW1K/MG3S method. $b\lambda^{ZPE}$ equals the product of λ^{Anh} and the generic parameter λ^{H} , where λ^{H} is obtained

from previous studies that gave λ^{H} equal to 0.982 for M06-2X/MG3S.

^cFor the aldehydes, the adducts, and the products of the H-shift reactions, we use the standard scale factors.

TS1B	H18 H17 C16H19 H5 012 H13 H3 C1 C4 H6 012 H13 H3 C1 C4 H6 014 H3 C1 C10 015 H2 H8 C7 C10 015 H11 H9	16	17-16-1-4 16-1-4-7 1-4-7-10 4-7-10-11
TS1C	H14 H14 H16 H10 H10 H10 H10 H10 H10 H10 H10 H10 H10	9	15-13-1-4 13-1-4-7 1-4-7-8
M1A	H10 H13 H20 H9 C8 C11 H16 019 H7 C5 H6 H12 C14 C17 H15 H18 021 H2 C1 H3 022	256	2-1-5-8 1-5-8-11 5-8-11-14 8-11-14-17 11-14-17-21 14-17-21-22 18-17-19-20
M1B	H13 H6 H2 H2 H3 H6 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1	30	17-16-1-4 16-1-4-7 1-4-7-10 4-7-10-14 7-10-14-15 11-10-12-13

S-11

Molecule	ε (in K)	σ (in Å)	Reference
N ₂	82	3.74	17
Не	10	2.55	23
HO ₂	289.3	4.20	18
C ₄ H ₈ O	148.02	4.35	19
C ₅ H ₁₀ O	171.37	4.34	25
C ₆ H ₁₂ O	178.29	4.70	25

Table S5. Lennard-Jones parameters for calculations of collision rates used in the pressuredependent calculations

violational seale lactors			
Method			TS1A ^a
	ΔV^{\ddagger}	ΔH_0^{\ddagger}	MUD^b
CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S	-2.28	-1.67	0.00^{c}
CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/MG3S	-2.21	-1.60	0.07
M11-L /MG3S	-1.38	-1.11	0.73
M06-2X/MG3S	-3.92	-3.31	1.64
Method			$TS1B^d$
	ΔV^{\ddagger}	ΔH_0^{\ddagger}	MUD^b
CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S	-2.29	-1.68	0.00^{c}
CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/MG3S	-2.22	-1.61	0.07
M11-L/MG3S	-1.35	-1.04	0.79
M06-2X/MG3S	-3.90	-3.29	1.61
Method			TS1C ^e
	ΔV^{\ddagger}	ΔH_0^{\ddagger}	MUD^b
CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S	-2.33	-1.69	0.00^{c}
CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/MG3S	-2.56	-1.61	0.07
M11-L/MG3S	-1.38	-1.04	0.80
M06-2X/MG3S	-3.94	-3.29	1.60

Table S6. Barrier heights, enthalpies of activation at 0 K (in kcal/mol), and their mean unsigned deviations from the reference values for the HO₂ reactions with C_5H_{11} CHO, C_4H_9 CHO, and C_3H_7 CHO (reactions R1–R2) as calculated using various theoretical methods with the standard vibrational scale factors

^{*a*}TS1A is the lowest-energy transition structure of the HO₂ + C_5H_{11} CHO reaction (R1).

^bMUD is mean unsigned deviation with respect to the first row. The mean unsigned deviation (MUD) is the average of the absolute error of the values in the previous two columns.

^cThese values are zero by definition since this is the reference value.

^{*d*}TS1B is the lowest-energy transition structure of the $HO_2 + C_4H_9CHO$ reaction (R2).

^{*e*}TS1C is the lowest-energy transition structure of the $HO_2 + C_3H_7CHO$ reaction (R3).

Method		ΔH_0	
	$TS2A^{a}$	M2A	MUD ^b
CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S	17.13	9.05	0.00
CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/MG3S	17.91	9.83	0.78
MN15-L/MG3S	15.62	8.58	0.99
M11-L/MG3S	14.78	6.65	2.37
Method		ΔH_0	
	TS2Bc	M2B	MUD^b
CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S	19.26	9.14	0.00
CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/MG3S	19.43	9.31	0.17
MN15-L/MG3S	16.87	7.59	1.97
M11-L/MG3S	16.14	6.21	3.02
Method		ΔH_0	
	$\mathrm{TS2C}^d$	M2C	MUD^b
CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S	21.45	9.47	0.00
CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/MG3S	21.63	9.65	0.18
MN15-L/MG3S	19.42	7.35	2.07
M11-L/MG3S	18.16	6.76	3.00

Table S7. The relative enthalpies at 0 K (in kcal/mol), and their mean unsigned deviations from the reference values for the H-shift reactions (reactions R4–R6) as calculated using various theoretical methods with the standard vibrational scale factors

^aTS2A is the lowest-energy transition structure of 1, 7-H-shift reaction (R4) of M1A.
 ^bMUD is mean unsigned deviation with respect to the first row. The mean unsigned deviation (MUD) is the average of the absolute error of the values in the previous two columns.

^{*c*}TS2B is the lowest-energy transition structure for the 1, 6-H-shift reaction (R5) of M1B. ^{*d*}TS2C is the lowest-energy transition structure for the 1, 5-H-shift reaction (R6) of M1C.

Table S8. Tunneling and recrossing transmission coefficients, torsional anharmonic factors, high-pressure-limit (HPL) rate coefficients (cm³ molecule⁻¹ s⁻¹), and HPL activation energies (kcal/mol) for the HO₂ + C₅H₁₁CHO reaction (reaction R1 with lowest-energy transition structure TS1A and other conformers included by the multistructural torsional anharmonicity factor)

<i>T(K)</i>	$F^{MS-T}_{fwd a}$	$k_{SS-TST^{\mathrm{b}}}^{HL}$	$\Gamma_{SS-CVT^c}^{LL}$	$k_{SS-SCT^d}^{LL}$	k _{R1} e	E _{af}
190	1.15	3.16E-13	3.71E-01	4.73	6.40E-13	-2.96
200	1.15	2.36E-13	3.92E-01	4.06	4.33E-13	-2.91
210	1.15	1.82E-13	4.11E-01	3.56	3.07E-13	-2.85
220	1.15	1.43E-13	4.30E-01	3.18	2.26E-13	-2.79
230	1.15	1.15E-13	4.47E-01	2.89	1.72E-13	-2.73
240	1.15	9.49E-14	4.64E-01	2.65	1.34E-13	-2.68
250	1.15	7.93E-14	4.79E-01	2.45	1.08E-13	-2.63
260	1.15	6.73E-14	4.94E-01	2.29	8.80E-14	-2.57
270	1.16	5.78E-14	5.07E-01	2.16	7.33E-14	-2.52
280	1.16	5.03E-14	5.20E-01	2.05	6.20E-14	-2.47
290	1.16	4.43E-14	5.33E-01	1.95	5.33E-14	-2.42
298	1.16	4.02E-14	5.42E-01	1.89	4.75E-14	-2.38
300	1.16	3.93E-14	5.44E-01	1.87	4.63E-14	-2.37
310	1.16	3.53E-14	5.55E-01	1.80	4.08E-14	-2.32
320	1.16	3.19E-14	5.65E-01	1.73	3.62E-14	-2.27
330	1.16	2.90E-14	5.75E-01	1.68	3.25E-14	-2.23
340	1.16	2.66E-14	5.84E-01	1.63	2.94E-14	-2.18
350	1.16	2.45E-14	5.92E-01	1.59	2.68E-14	-2.13

 $_{a}F^{\overline{MS-T}}_{f,\ldots,r}$

 $a^{F'' f w d}$ is the multistructural torsional anharmonicity factor calculated with the standard scale factor.

 ${}_{b}k_{SS-TST}^{HL}$ is the HL level calculation by conventional transition state theory without a transmission coefficient with the specific-reaction-parameter scale factor.

 $c\Gamma_{SS-CVT}$ is the LL recrossing transmission coefficient, which equals $k_{SS} - CVT / k_{SS} - TST$ calculated with the standard scale factor.

 $_{dk_{SS}-SCT}^{LL}$ is the LL tunneling transmission coefficient calculated by the small-curvature tunneling approximation with the standard scale factor.

^{*e*}The high-pressure-limit rate coefficient given by eq S1. HL is CCSD(T)-F12a/ccpVTZ//M06-2X/MG3S, and LL is M11-L/MG3S. This bimolecular reaction is considered to be independent of pressure, and so the high-pressure limit (HPL) applies at all pressures.

 ${}^{fE_{a}}$ is Arrhenius activation energy (kcal/mol) for the high-pressure limit, which is dln k_{1b}

calculated as $-R\overline{d(1/T)}$.

Table S9. Tunneling and recrossing transmission coefficients, torsional anharmonic factors, high-pressure-limit (HPL) rate coefficients (cm³ molecule⁻¹ s⁻¹), and HPL activation energies (kcal/mol) for the HO₂ + C₄H₉CHO reaction (reaction R2 with lowest-energy transition structure TS1B and other conformers included by the multistructural torsional anharmonicity factor)

T(K)	$F^{MS-T}_{fwd a}$	$k_{SS-TST^{\mathrm{b}}}^{HL}$	$\Gamma_{SS-CVT^c}^{LL}$	$k_{SS-SCT^d}^{LL}$	k _{R2e}	Eaf
190	1.91	3.75E-13	3.60E-01	4.87	1.26E-12	-2.99
200	1.93	2.78E-13	3.81E-01	4.15	8.48E-13	-2.93
210	1.94	2.12E-13	4.00E-01	3.63	5.99E-13	-2.88
220	1.95	1.66E-13	4.19E-01	3.23	4.39E-13	-2.83
230	1.96	1.33E-13	4.36E-01	2.92	3.33E-13	-2.78
240	1.96	1.09E-13	4.52E-01	2.68	2.59E-13	-2.73
250	1.97	9.05E-14	4.68E-01	2.48	2.07E-13	-2.68
260	1.97	7.64E-14	4.83E-01	2.31	1.68E-13	-2.63
270	1.97	6.54E-14	4.96E-01	2.18	1.40E-13	-2.58
280	1.97	5.67E-14	5.10E-01	2.06	1.18E-13	-2.54
290	1.97	4.97E-14	5.22E-01	1.96	1.00E-13	-2.49
298	1.97	4.50E-14	5.31E-01	1.89	8.93E-14	-2.46
300	1.97	4.40E-14	5.34E-01	1.88	8.70E-14	-2.45
310	1.97	3.93E-14	5.45E-01	1.80	7.61E-14	-2.40
320	1.97	3.54E-14	5.55E-01	1.74	6.73E-14	-2.36
330	1.97	3.22E-14	5.65E-01	1.68	6.01E-14	-2.32
340	1.96	2.94E-14	5.74E-01	1.63	5.41E-14	-2.27
350	1.96	2.71E-14	5.83E-01	1.59	4.91E-14	-2.23

 $aF^{\overline{MS-T}}_{fund}$

 $a^{F'' f w d}$ is the multistructural torsional anharmonicity factor calculated with the standard scale factor.

 ${}_{b}k_{SS-TST}^{HL}$ is the HL level calculation by conventional transition state theory without a transmission coefficient with the specific-reaction-parameter scale factor.

 $c\Gamma_{SS-CVT}$ is the LL recrossing transmission coefficient, which equals $k_{SS} - CVT / k_{SS} - TST$ calculated with the standard scale factor.

 ${}_{dk_{SS}}{}_{-SCT}^{LL}$ is the LL tunneling transmission coefficient calculated by the small-curvature tunneling approximation with the standard scale factor.

^eThe high-pressure-limit rate coefficient given by eq S1. HL is CCSD(T)-F12a/ccpVTZ//M06-2X/MG3S, and LL is M11-L/MG3S. This bimolecular reaction is considered

to be independent of pressure, and so the high-pressure limit (HPL) applies at all pressures. ${}^{fE_{a}}$ is the Arrhenius activation energy (kcal/mol) for the high-pressure limit, which is

 $d\ln k_{2h}$

calculated as $-R\overline{d(1/T)}$.

Table S10. Tunneling and recrossing transmission coefficients, torsional anharmonic factors, high-pressure-limit (HPL) rate coefficients (cm³ molecule⁻¹ s⁻¹), and HPL activation energies (kcal/mol) for the HO₂ + C_4H_9 CHO reaction (reaction R3 with lowest-energy transition structure TS1C and other conformers included by the multistructural torsional anharmonicity factor)

T(K)	F^{MS-T}_{fwd} a	$k_{SS-TST^{\mathrm{b}}}^{HL}$	$\Gamma_{SS-CVT^c}^{LL}$	$k_{SS-SCT^d}^{LL}$	k _{R3e}	E _{af}
190	1.39	4.21E-13	3.45E-01	4.75	9.58E-13	-3.06
200	1.39	3.11E-13	3.65E-01	4.06	6.40E-13	-3.00
210	1.39	2.36E-13	3.84E-01	3.56	4.49E-13	-2.94
220	1.39	1.84E-13	4.02E-01	3.17	3.27E-13	-2.88
230	1.39	1.47E-13	4.18E-01	2.87	2.46E-13	-2.83
240	1.40	1.20E-13	4.34E-01	2.63	1.91E-13	-2.77
250	1.40	9.93E-14	4.49E-01	2.44	1.52E-13	-2.71
260	1.40	8.36E-14	4.64E-01	2.28	1.23E-13	-2.66
270	1.40	7.14E-14	4.77E-01	2.15	1.02E-13	-2.61
280	1.40	6.17E-14	4.90E-01	2.03	8.60E-14	-2.55
290	1.40	5.40E-14	5.02E-01	1.94	7.35E-14	-2.50
298	1.40	4.88E-14	5.11E-01	1.87	6.53E-14	-2.46
300	1.40	4.77E-14	5.13E-01	1.85	6.36E-14	-2.45
310	1.40	4.25E-14	5.24E-01	1.78	5.56E-14	-2.40
320	1.40	3.82E-14	5.34E-01	1.72	4.92E-14	-2.35
330	1.40	3.47E-14	5.43E-01	1.67	4.40E-14	-2.30
340	1.40	3.16E-14	5.52E-01	1.62	3.96E-14	-2.25
350	1.40	2.91E-14	5.61E-01	1.57	3.60E-14	-2.20

 $_{a}F^{MS-T}_{fwd}$ is the multistructural torsional anharmonicity factor calculated with the standard scale factor.

 $_{b}k_{SS-TST}^{HL}$ is the HL level calculation by conventional transition state theory without a transmission coefficient with the specific-reaction-parameter scale factor.

 $c\Gamma_{SS-CVT}$ is the LL recrossing transmission coefficient, which equals $k_{SS-CVT}/k_{SS-TST}^{LL}$ calculated with the standard scale factor.

 $_{dk_{SS}-SCT}^{LL}$ is the LL tunneling transmission coefficient calculated by the small-curvature tunneling approximation with the standard scale factor.

^eThe high-pressure-limit rate coefficient given by eq S1. HL is CCSD(T)-F12a/ccpVTZ//M06-2X/MG3S, and LL is M11-L/MG3S.

 f^{E} a is Arrhenius activation energy (kcal/mol) for the high-pressure limit, which is $d \ln k_{3h}$

calculated as $-R \overline{d(1/T)}$.

<i>T(K)</i>	F_{fwd}^{MS-T}	$k_{SS-TST^{\mathrm{b}}}^{HL}$	$\Gamma_{SS-CVT^c}^{LL}$	$k_{SS-SCT^d}^{LL}$	k_{1u^e}	E _{af}
190	0.37	1.24E-08	9.33E-01	556.56	2.39E-06	12.98
200	0.34	1.15E-07	9.34E-01	336.35	1.24E-05	12.79
210	0.32	8.59E-07	9.35E-01	216.54	5.57E-05	12.66
220	0.30	5.35E-06	9.35E-01	146.87	2.19E-04	12.57
230	0.28	2.84E-05	9.36E-01	104.04	7.70E-04	12.52
240	0.26	1.31E-04	9.36E-01	76.47	2.44E-03	12.50
250	0.24	5.37E-04	9.36E-01	57.98	7.10E-03	12.51
260	0.23	1.97E-03	9.36E-01	45.17	1.90E-02	12.55
270	0.21	6.58E-03	9.37E-01	36.01	4.75E-02	12.61
280	0.20	2.02E-02	9.37E-01	29.30	1.11E-01	12.69
290	0.19	5.72E-02	9.37E-01	24.27	2.46E-01	12.78
298	0.18	1.25E-01	9.37E-01	21.11	4.47E-01	12.87
300	0.18	1.51E-01	9.37E-01	20.41	5.17E-01	12.90
310	0.17	3.76E-01	9.37E-01	17.42	1.04E+00	13.03
320	0.16	8.85E-01	9.37E-01	15.04	1.99E+00	13.17
330	0.15	1.98E+00	9.37E-01	13.14	3.68E+00	13.32
340	0.14	4.21E+00	9.37E-01	11.59	6.56E+00	13.49
350	0.14	8.60E+00	9.37E-01	10.32	1.13E+01	13.67

Table S11. Tunneling and recrossing transmission coefficients, torsional anharmonic factors, high-pressure-limit (HPL) rate coefficients (s⁻¹), and HPL activation energies (kcal/mol) for reaction R4

 ${}_{a}F^{MS-T}_{fwd}$ is the multistructural torsional anharmonicity factor calculated with the standard scale factor.

 $_{b}k_{SS-TST}^{HL}$ is the HL level calculation by conventional transition state theory without a transmission coefficient with the specific-reaction-parameter scale factor.

 $c\Gamma_{SS-CVT}$ is the LL recrossing transmission coefficient, which equals $k_{SS-CVT}/k_{SS-TST}^{LL}$ calculated with the standard scale factor.

 $_{dk_{SS}-SCT}^{LL}$ is the LL tunneling transmission coefficient calculated by the small-curvature tunneling approximation with the standard scale factor.

^eThe high-pressure-limit rate coefficient given by eq S1. HL is CCSD(T)-F12a/ccpVTZ//M06-2X/MG3S, and LL is MM15-L/MG3S.

 ${}^{fE}a$ is Arrhenius activation energy (kcal/mol) for the high-pressure limit, which is $d \ln k_{1,i}$

calculated as $-R\overline{d(1/T)}$.

		,				
T(K)	$F^{MS-T}_{fwd}a$	$k_{SS-TST^b}^{HL}$	$\Gamma_{SS-CVT^c}^{LL}$	$k_{SS-SCT^d}^{LL}$	k _{2u} e	Eaf
190	0.40	6.81E-11	8.01E-01	769.34	1.69E-08	14.63
200	0.38	8.43E-10	8.06E-01	421.96	1.08E-07	14.49
210	0.35	8.21E-09	8.10E-01	251.74	5.95E-07	14.42
220	0.33	6.50E-08	8.14E-01	160.70	2.85E-06	14.39
230	0.32	4.30E-07	8.17E-01	108.41	1.20E-05	14.40
240	0.30	2.43E-06	8.20E-01	76.58	4.57E-05	14.45
250	0.28	1.20E-05	8.22E-01	56.22	1.57E-04	14.53
260	0.27	5.21E-05	8.25E-01	42.64	4.96E-04	14.63
270	0.26	2.03E-04	8.27E-01	33.27	1.44E-03	14.76
280	0.25	7.21E-04	8.29E-01	26.59	3.91E-03	14.90
290	0.24	2.34E-03	8.30E-01	21.70	9.96E-03	15.06
298	0.23	5.68E-03	8.31E-01	18.69	2.01E-02	15.20
300	0.23	7.04E-03	8.32E-01	18.04	2.39E-02	15.24
310	0.22	1.97E-02	8.33E-01	15.24	5.43E-02	15.43
320	0.21	5.18E-02	8.34E-01	13.06	1.18E-01	15.63
330	0.20	1.28E-01	8.35E-01	11.34	2.44E-01	15.85
340	0.19	3.02E-01	8.36E-01	9.95	4.87E-01	16.07
350	0.19	6.76E-01	8.36E-01	8.83	9.35E-01	16.30

Table S12. The tunneling and recrossing transmission coefficients, the torsional anharmonic factors, high-pressure-limit (HPL) rate coefficients (s⁻¹), and HPL activation energies (kcal/mol) for the M1B isomerism reaction (reaction R5 with lowest-energy transition structure TS2B)

 $a\overline{F}^{MS-T}_{f}$

 $f^{r} fwd$ is the multistructural torsional anharmonicity factor calculated with the standard scale factor.

 ${}_{b}k_{ss-Tst}^{HL}$ is the HL level calculation by conventional transition state theory without a transmission coefficient with the specific-reaction-parameter scale factor.

 ${}_{c}\Gamma_{SS-CVT}$ is the LL recrossing transmission coefficient, which equals k_{SS-CVT}/k_{SS-TST} calculated with the standard scale factor.

 ${}^{dk_{SS}} - {}^{LL}_{SCT}$ is the LL tunneling transmission coefficient calculated by the small-curvature tunneling approximation with the standard scale factor.

^eThe high-pressure-limit rate coefficient given by eq S1. HL is CCSD(T)-F12a/cc-pVTZ//M06-2X/MG3S, and LL is MN15-L/MG3S.

 ${}^{fE}a$ is Arrhenius activation energy (kcal/mol) for the high-pressure limit, which is $d\ln k_{2u}$

calculated as -Rd(1/T).

Table S13. The tunneling and recrossing transmission coefficients, the torsional anharmonic factors, high-pressure-limit (HPL) rate coefficients (s⁻¹), and HPL activation energies (kcal/mol) for the M1C isomerism reaction (reaction R6 with lowest-energy transition structure TS2C)

T(K)	$F^{MS-T}_{fwd}a$	$k_{SS-TST^b}^{HL}$	$\Gamma_{SS-CVT^c}^{LL}$	$k_{SS-SCT^d}^{LL}$	k _{3u} e	E _{a6} f
190	0.41	4.63E-13	8.16E-01	355060.00	5.51E-08	9.33
200	0.39	7.70E-12	8.20E-01	81840.00	2.04E-07	9.56
210	0.38	9.80E-11	8.24E-01	21963.00	6.73E-07	9.86
220	0.37	9.90E-10	8.27E-01	6755.10	2.02E-06	10.23
230	0.35	8.18E-09	8.30E-01	2356.00	5.62E-06	10.65
240	0.34	5.67E-08	8.32E-01	925.82	1.48E-05	11.13
250	0.33	3.37E-07	8.34E-01	408.48	3.75E-05	11.65
260	0.32	1.74E-06	8.36E-01	201.72	9.30E-05	12.21
270	0.31	7.99E-06	8.38E-01	110.92	2.27E-04	12.81
280	0.30	3.29E-05	8.40E-01	67.30	5.50E-04	13.44
290	0.29	1.23E-04	8.41E-01	44.48	1.32E-03	14.09
298	0.28	3.31E-04	8.42E-01	33.63	2.62E-03	14.63
300	0.28	4.20E-04	8.42E-01	31.56	3.11E-03	14.77
310	0.27	1.33E-03	8.43E-01	23.70	7.16E-03	15.47
320	0.26	3.91E-03	8.44E-01	18.60	1.61E-02	16.19
330	0.25	1.08E-02	8.45E-01	15.12	3.51E-02	16.94
340	0.25	2.81E-02	8.46E-01	12.63	7.43E-02	17.69
350	0.24	6.91E-02	8.47E-01	10.78	1.52E-01	18.47
MCT						

 ${}_{a}F^{MS-1}_{fwd}$ is the multistructural torsional anharmonicity factor calculated with the standard scale factor.

 $_{b}k_{SS-TST}^{HL}$ is the HL level calculation by conventional transition state theory without a transmission coefficient with the specific-reaction-parameter scale factor.

 $c\Gamma_{SS-CVT}$ is the LL recrossing transmission coefficient, which equals $k_{SS} - CVT / k_{SS} - TST$ calculated with the standard scale factor.

 dk_{SS-SCT} is the LL tunneling transmission coefficient calculated by the small-curvature tunneling approximation with the standard scale factor.

^eThe high-pressure-limit rate coefficient given by eq S1. HL is CCSD(T)-F12a/ccpVTZ//M06-2X/MG3S, and LL is MN15-L/MG3S.

 ${}_{f}E_{a}$ is Arrhenius activation energy (kcal/mol) for the high-pressure limit, which is $d\ln k_{3u}$

calculated as $-R \overline{d(1/T)}$.

Rate coefficient	Reaction	ln A	n	Ε	T ₀
k _{R1}	R1	-36.38	1.98	-3.13	18.74
k _{R2}	R2	-35.64	1.74	-3.08	18.80
k _{R3}	R3	-36.25	2.04	-3.23	18.77
k _{1u}	R4	-1.72	17.29	-6.55	-89.02
k _{2u}	R5	-1.86	19.04	-4.78	-92.25
k _{3u}	R6	-39.25	50.73	-27.90	-37.69

Table S14. Fitting parameters for the high-pressure-limit (HPL) rate coefficients^a

^{*a*} A is in cc molecule⁻¹ s⁻¹; *n* is unitless; E is in kcal/mol; and T_0 is in K.

Table S15. The conventional transition state theory (TST) rate coefficients $(10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ without a transmission coefficient for the HO₂ + RCHO (R = C₅H₁₁ C₄H₉, and C₃H₇) reactions and the resulting multistructural torsional anharmonicity factors^{a,b,c}

	F	R1	R	2	R	.3	R1	R2	R3
T(K)	k_{SS-TST}^{HL}	k_{SS-TST}^{HLS}	k_{SS-TST}^{HL}	k_{SS-TST}^{HLS}	 k_{SS-TST}^{HL}	k_{SS-TST}^{HLS}	F^{MS-T}_{fwd}	F^{MS-T}_{fwd}	F^{MS-T}_{fwd}
190	31.6	14.1	37.5	14.7	42.1	16.1	2.24	2.55	2.61
200	23.6	11.0	27.8	11.5	31.1	12.5	2.15	2.43	2.48
210	18.2	8.78	21.2	91.6	23.6	9.96	2.07	2.32	2.37
220	14.3	7.17	16.6	7.46	18.4	8.10	2.00	2.23	2.28
230	11.5	5.97	13.3	6.20	14.7	6.71	1.94	2.15	2.19
240	9.49	5.05	10.9	5.24	1.20	5.66	1.88	2.08	2.12
250	7.93	4.33	9.05	4.49	9.93	4.84	1.83	2.02	2.05
260	6.73	3.77	7.64	3.90	8.36	4.19	1.78	1.96	1.99
270	5.78	3.32	6.54	3.43	7.14	3.68	1.74	1.91	1.94
280	5.03	2.95	5.67	3.05	6.17	3.26	1.71	1.86	1.89
290	4.43	2.65	4.97	2.73	5.40	2.92	1.67	1.82	1.85
298	4.02	2.44	4.50	2.52	4.88	2.69	1.64	1.79	1.81
300	3.93	2.40	4.40	2.47	4.77	2.64	1.64	1.78	1.81
310	3.53	2.19	3.93	2.25	4.25	2.40	1.61	1.75	1.77
320	3.19	2.01	3.54	2.07	3.82	2.20	1.59	1.71	1.74
330	2.90	1.86	3.22	1.91	3.47	2.03	1.56	1.68	1.71
340	2.66	1.73	2.94	1.78	3.16	1.89	1.54	1.65	1.68
350	2.45	1.62	2.71	1.66	2.91	1.76	1.52	1.63	1.65

 $a^{k} k_{SS-TST}^{HL}$ is the conventional transition state theory rate coefficient calculated using the specific reaction parameter scale factor.

 k_{SS-TST}^{HLS} is the conventional transition state theory rate coefficients calculated using the standard scale factor.

 ${}_{c}F_{fwd}^{MS-T}$ is $k_{SS-TST/}^{HL}k_{SS-TST}^{HLS}$

	without a t anharmonic	ransmission co city factors ^{a,b,c}	befficient for	reactions R4–	R6 and the	resulting mul	tistructura	l torsion	al
	R4	R4	R5	R5	R6	R6	R4	R5	R6
-	, HL	1 HLS	, HL	, HLS	, HL	1 HLS	-MS-T	-MS-T	-MS-T

Table S16. The conventional transition state theory (TST) rate coefficients (cm^3 molecule⁻¹ s⁻¹)

					_			-			
T(K)	k_{SS-TST}^{HL}	k_{SS-TST}^{HLS}	k_{SS-TST}^{HL}	k_{SS-TST}^{HLS}		k_{SS-TST}^{HL}	k_{SS-TST}^{HLS}	F^{MS-}_{fw}	−T d	F^{MS-T}_{fwd}	F^{MS-T}_{fwd}
190	1.24E-8	6.64E-9	6.81E-11	4.01E-11		4.63E-13	2.41E-13	1.8′	7	1.70	1.92
200	1.15E-7	6.32E-8	8.43E-10	5.09E-10		7.70E-12	4.15E-12	1.82	2	1.66	1.86
210	8.59E-7	4.86E-7	8.21E-9	5.07E-9		9.80E-11	5.43E-11	1.7	7	1.62	1.81
220	5.35E-6	3.10E-6	6.50E-8	4.10E-8		9.90E-10	5.63E-10	1.7.	3	1.59	1.76
230	2.84E-5	1.68E-5	4.30E-7	2.77E-7		8.18E-9	4.76E-9	1.6	9	1.56	1.72
240	1.31E-4	7.95E-5	2.43E-6	1.59E-6		5.67E-8	3.37E-8	1.6	5	1.53	1.68
250	5.37E-4	3.31E-4	1.20E-5	7.95E-6		3.37E-7	2.04E-7	1.62	2	1.50	1.65
260	1.97E-3	1.24E-3	5.21E-5	3.51E-5		1.74E-6	1.08E-6	1.5	9	1.48	1.62
270	6.58E-3	4.20E-3	2.03E-4	1.39E-4		7.99E-6	5.02E-6	1.5	7	1.46	1.59
280	2.02E-2	1.31E-2	7.21E-4	4.99E-4		3.29E-5	2.10E-5	1.54	4	1.44	1.57
290	5.72E-2	3.75E-2	2.34E-3	1.64E-3		1.23E-4	7.95E-5	1.52	2	1.43	1.55
298	1.25E-1	8.31E-2	5.68E-3	4.02E-3		3.31E-4	2.16E-4	1.5	0	1.41	1.53
300	1.51E-1	1.01E-1	7.04E-3	4.99E-3		4.20E-4	2.76E-4	1.5	0	1.41	1.53
310	3.76E-1	2.53E-1	1.97E-2	1.41E-2		1.33E-3	8.82E-4	1.4	9	1.40	1.51
320	8.85E-1	6.02E-1	5.18E-2	3.74E-2		3.91E-3	2.63E-3	1.4	7	1.38	1.49
330	1.98	1.36	1.28E-1	9.36E-2		1.08E-2	7.33E-3	1.4	5	1.37	1.47
340	4.21	2.93	3.02E-1	2.22E-1		2.81E-2	1.92E-2	1.44	4	1.36	1.46
350	8.60	6.03	6.76E-1	5.01E-1		6.91E-2	4.79E-2	1.4	3	1.35	1.44

 $_{a}k_{SS-TST}^{HL}$ is the conventional transition state theory rate coefficient calculated using the specific reaction parameter scale factor.

 k_{SS-TST}^{HLS} is the conventional transition state theory rate coefficients calculated using the standard

scale factor. ${}_{c}F_{fwd}^{MS-T}$ is $k_{SS-TST}^{HL}/k_{SS-TST}^{HLS}$

	I	R1	R2		R3	
	$HO_2 + C$	² ₅ H ₁₁ CHO	$HO_2 + C_4H_9CHO$		$HO_2 + C_3H_7CHO$	
T(K)	SS-QRRK ^b	ME/RRKM ^c	SS-QRRK ^b	ME/RRKM ^c	SS-QRRK ^b	ME/RRKM ^c
190	1.04	1.02	1.02	1.01	1.02	1.01
230	1.11	1.12	1.04	1.04	1.04	1.04
250	1.17	1.23	1.06	1.08	1.06	1.08
270	1.26	1.40	1.09	1.14	1.09	1.14
298	1.48	1.80	1.16	1.30	1.15	1.27
310	1.63	2.04	1.21	1.40	1.19	1.35
330	1.99	2.59	1.33	1.61	1.29	1.53
350	2.57	3.39	1.51	1.91	1.45	1.78

Table S17. The falloff factor f(1 bar) (unitless) calculated by SS-QRRK and by ME/RRKM for reactions R1–R3 as functions of temperature

^{*a*}The falloff effect defined as the ratio of $k_{\infty}(T)$ to k(T, p).

^bThe SS-QRRK falloff effects are obtained by the system-specific quantum Rice-Ramsperger-Kassel method.

^cThe ME/RRKM falloff effects are obtained by the master equation with Rice–Ramsperger– Kassel–Marcus microcanonical rate constants. Note that Rice–Ramsperger–Kassel–Marcus microcanonical rate constants are the same as conventional transition state theory rate constants for a unimolecular process.

	action it f reaction			
p(bar)	350 K	330 K	310 K	298 K
0.0316	7.35E-16	1.44E-15	2.81E-15	4.16E-15
0.1	2.11E-15	3.98E-15	7.38E-15	1.06E-14
0.178	3.41E-15	6.21E-15	1.11E-14	1.55E-14
0.316	5.23E-15	9.13E-15	1.55E-14	2.11E-14
0.562	7.58E-15	1.26E-14	2.04E-14	2.68E-14
1	1.04E-14	1.63E-14	2.51E-14	3.22E-14
1.78	1.34E-14	2.00E-14	2.94E-14	3.68E-14
3.16	1.64E-14	2.34E-14	3.30E-14	4.04E-14
5.62	1.91E-14	2.62E-14	3.57E-14	4.30E-14
10	2.15E-14	2.84E-14	3.76E-14	4.47E-14
31.6	2.46E-14	3.09E-14	3.97E-14	4.65E-14
50	2.53E-14	3.15E-14	4.01E-14	4.69E-14
100	2.60E-14	3.20E-14	4.04E-14	4.72E-14
1000	2.67E-14	3.24E-14	4.08E-14	4.75E-14
p(bar)	270 K	250 K	230 K	190 K
0.0316	1.05E-14	2.09E-14	4.36E-14	2.90E-13
0.1	2.44E-14	4.53E-14	8.74E-14	4.61E-13
0.178	3.36E-14	5.96E-14	1.10E-13	5.24E-13
0.316	4.29E-14	7.29E-14	1.30E-13	5.69E-13
0.562	5.14E-14	8.41E-14	1.44E-13	5.98E-13
1	5.83E-14	9.25E-14	1.55E-13	6.15E-13
1.78	6.36E-14	9.83E-14	1.62E-13	6.26E-13
3.16	6.72E-14	1.02E-13	1.66E-13	6.32E-13
5.62	6.96E-14	1.05E-13	1.69E-13	6.35E-13
10	7.11E-14	1.06E-13	1.70E-13	6.37E-13
31.6	7.26E-14	1.07E-13	1.71E-13	6.39E-13
50	7.28E-14	1.08E-13	1.72E-13	6.39E-13
100	7.31E-14	1.08E-13	1.72E-13	6.40E-13
1000	7.33E-14	1.08E-13	1.72E-13	6.40E-13

Table S18A. The pressure-dependent rate coefficient k(T,p) (in cm³ molecule⁻¹ s⁻¹) of HO₂ + C₅H₁₁CHO (reaction R1) reaction as calculated by dual-level DL-MS-CVT/SCT /SS-QRRK^a

^aThe specific reaction parameter scale factor and multistructural torsional anharmonicity factor are used. The HPL rate constants in this table agree with those in Table S8.

Contraction =								
p(bar)	350 K	330 K	310 K	298 K				
0.0316	3.34E-16	6.48E-16	1.29E-15	1.96E-15				
0.1	7.66E-16	1.40E-15	2.59E-15	3.77E-15				
0.178	1.12E-15	1.98E-15	3.53E-15	5.03E-15				
0.316	1.60E-15	2.73E-15	4.68E-15	6.51E-15				
0.562	2.23E-15	3.65E-15	6.02E-15	8.16E-15				
1	3.01E-15	4.74E-15	7.50E-15	9.90E-15				
1.78	3.92E-15	5.94E-15	9.02E-15	1.16E-14				
3.16	4.93E-15	7.18E-15	1.05E-14	1.32E-14				
5.62	5.99E-15	8.39E-15	1.18E-14	1.46E-14				
10	7.00E-15	9.47E-15	1.29E-14	1.56E-14				
31.6	8.66E-15	1.11E-14	1.43E-14	1.70E-14				
50	9.13E-15	1.15E-14	1.47E-14	1.73E-14				
100	9.64E-15	1.19E-14	1.50E-14	1.75E-14				
1000	1.02E-14	1.23E-14	1.53E-14	1.78E-14				
p(bar)	270 K	250 K	230 K	190 K				
0.0316	5.47E-15	1.18E-14	2.64E-14	1.64E-13				
0.1	9.37E-15	1.84E-14	3.75E-14	1.93E-13				
0.178	1.18E-14	2.21E-14	4.28E-14	2.03E-13				
0.316	1.43E-14	2.56E-14	4.76E-14	2.11E-13				
0.562	1.68E-14	2.89E-14	5.17E-14	2.16E-13				
1	1.93E-14	3.18E-14	5.49E-14	2.20E-13				
1.78	2.14E-14	3.41E-14	5.73E-14	2.22E-13				
3.16	2.31E-14	3.58E-14	5.89E-14	2.23E-13				
5.62	2.45E-14	3.71E-14	6.00E-14	2.24E-13				
10	2.54E-14	3.79E-14	6.07E-14	2.25E-13				
31.6	2.64E-14	3.87E-14	6.14E-14	2.25E-13				
50	2.66E-14	3.89E-14	6.15E-14	2.25E-13				
100	2.68E-14	3.90E-14	6.16E-14	2.25E-13				
1000	2.70E-14	3.91E-14	6.17E-14	2.25E-13				

Table S18B. The temperature–pressure dependent rate coefficient k(T,p) (in cm³ molecule⁻¹ s⁻¹) of HO₂ + C₅H₁₁CHO (reaction R1) reaction as calculated by the ME/RRKM with the higher level of electronic structure^a (CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S)

^aThe standard scale factor is used.

$HO_2 + C_4H_9CH$	IO (reaction R2)	reaction as calcu	lated by dual-lev	el DL-MS-CV1/
p(bar)	350 K	330 K	310 K	298 K
0.0316	4.85E-15	8.67E-15	1.53E-14	2.15E-14
0.1	1.15E-14	1.92E-14	3.14E-14	4.19E-14
0.178	1.63E-14	2.59E-14	4.05E-14	5.27E-14
0.316	2.16E-14	3.28E-14	4.92E-14	6.25E-14
0.562	2.72E-14	3.95E-14	5.68E-14	7.07E-14
1	3.25E-14	4.53E-14	6.30E-14	7.70E-14
1.78	3.71E-14	5.00E-14	6.76E-14	8.15E-14
3.16	4.09E-14	5.35E-14	7.08E-14	8.46E-14
5.62	4.38E-14	5.60E-14	7.29E-14	8.65E-14
10	4.58E-14	5.76E-14	7.42E-14	8.77E-14
31.6	4.79E-14	5.93E-14	7.55E-14	8.88E-14
50	4.83E-14	5.96E-14	7.57E-14	8.90E-14
100	4.87E-14	5.98E-14	7.59E-14	8.91E-14
1000	4.91E-14	6.01E-14	7.61E-14	8.93E-14
p(bar)	270 K	250 K	230 K	190 K
0.0316	4.77E-14	8.61E-14	1.65E-13	8.86E-13
0.1	8.33E-14	1.40E-13	2.48E-13	1.11E-12
0.178	9.93E-14	1.61E-13	2.78E-13	1.17E-12
0.316	1.12E-13	1.77E-13	2.98E-13	1.21E-12
0.562	1.22E-13	1.88E-13	3.12E-13	1.23E-12
1	1.29E-13	1.96E-13	3.21E-13	1.24E-12
1.78	1.33E-13	2.00E-13	3.26E-13	1.25E-12
3.16	1.36E-13	2.03E-13	3.29E-13	1.25E-12
5.62	1.38E-13	2.05E-13	3.31E-13	1.26E-12
10	1.39E-13	2.06E-13	3.32E-13	1.26E-12
31.6	1.40E-13	2.07E-13	3.33E-13	1.26E-12
50	1.40E-13	2.07E-13	3.33E-13	1.26E-12
100	1.40E-13	2.07E-13	3.33E-13	1.26E-12
1000	1.40E-13	2.07E-13	3.33E-13	1.26E-12

Table S19A. The temperature–pressure dependent rate coefficient k(T,p) (in cm³ molecule⁻¹ s⁻¹) of HO₂ + C₄H₉CHO (reaction R2) reaction as calculated by dual-level DL-MS-CVT/SCT/SS-QRRK

^aThe specific reaction parameter scale factor and multistructural torsional anharmonicity factor are used. The HPL rate constants in this table agree with those in Table S9.

p(bar)	350 K	330 K	310 K	298 K					
0.0316	9.97E-16	1.77E-15	3.18E-15	4.56E-15					
0.1	1.99E-15	3.30E-15	5.53E-15	7.56E-15					
0.178	2.70E-15	4.33E-15	6.97E-15	9.31E-15					
0.316	3.56E-15	5.49E-15	8.50E-15	1.11E-14					
0.562	4.54E-15	6.74E-15	1.01E-14	1.28E-14					
1	5.59E-15	8.00E-15	1.15E-14	1.44E-14					
1.78	6.66E-15	9.20E-15	1.28E-14	1.57E-14					
3.16	7.65E-15	1.02E-14	1.38E-14	1.67E-14					
5.62	8.52E-15	1.11E-14	1.46E-14	1.74E-14					
10	9.23E-15	1.17E-14	1.52E-14	1.79E-14					
31.6	1.01E-14	1.25E-14	1.58E-14	1.84E-14					
50	1.03E-14	1.26E-14	1.59E-14	1.85E-14					
100	1.05E-14	1.28E-14	1.60E-14	1.86E-14					
1000	1.07E-14	1.29E-14	1.61E-14	1.87E-14					
p(bar)	270 K	250 K	230 K	190 K					
0.0316	1.09E-14	2.08E-14	4.15E-14	2.12E-13					
0.1	1.61E-14	2.83E-14	5.20E-14	2.31E-13					
0.178	1.87E-14	3.16E-14	5.61E-14	2.37E-13					
0.316	2.11E-14	3.45E-14	5.93E-14	2.41E-13					
0.562	2.32E-14	3.67E-14	6.17E-14	2.43E-13					
1	2.49E-14	3.84E-14	6.34E-14	2.45E-13					
1.78	2.61E-14	3.96E-14	6.45E-14	2.46E-13					
3.16	2.70E-14	4.04E-14	6.51E-14	2.46E-13					
5.62	2.76E-14	4.09E-14	6.55E-14	2.47E-13					
10	2.80E-14	4.12E-14	6.58E-14	2.47E-13					
31.6	2.84E-14	4.15E-14	6.60E-14	2.47E-13					
50	2.84E-14	4.15E-14	6.60E-14	2.47E-13					
100	2.85E-14	4.16E-14	6.61E-14	2.47E-13					
1000	2.85E-14	4.16E-14	6.61E-14	2.47E-13					

Table S19B. The temperature–pressure dependent rate coefficient k(T,p) (in cm³ molecule⁻¹ s⁻¹) of HO₂ + C₄H₉CHO (reaction R2) reaction as calculated by the ME/RRKM with the higher level of electronic structure^a (CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S)

^aThe standard scale factor is used.

p(bar)	350 K	330 K	310 K	298 K
0.0316	3.81E-15	6.73E-15	1.14E-14	1.57E-14
0.1	9.10E-15	1.49E-14	2.36E-14	3.11E-14
0.178	1.28E-14	2.01E-14	3.04E-14	3.92E-14
0.316	1.69E-14	2.52E-14	3.68E-14	4.64E-14
0.562	2.10E-14	3.00E-14	4.23E-14	5.23E-14
1	2.48E-14	3.42E-14	4.67E-14	5.68E-14
1.78	2.81E-14	3.74E-14	4.99E-14	6.00E-14
3.16	3.07E-14	3.98E-14	5.21E-14	6.21E-14
5.62	3.26E-14	4.14E-14	5.35E-14	6.34E-14
10	3.39E-14	4.24E-14	5.44E-14	6.42E-14
31.6	3.53E-14	4.35E-14	5.52E-14	6.49E-14
50	3.55E-14	4.37E-14	5.53E-14	6.51E-14
100	3.58E-14	4.38E-14	5.55E-14	6.52E-14
1000	3.60E-14	4.40E-14	5.56E-14	6.53E-14
p(bar)	270 K	250 K	230 K	190 K
0.0316	3.35E-14	5.97E-14	1.13E-13	6.17E-13
0.1	5.99E-14	9.99E-14	1.77E-13	8.14E-13
0.178	7.20E-14	1.16E-13	2.01E-13	8.70E-13
0.316	8.16E-14	1.29E-13	2.18E-13	9.06E-13
0.562	8.89E-14	1.38E-13	2.29E-13	9.28E-13
1	9.39E-14	1.43E-13	2.36E-13	9.41E-13
1.78	9.71E-14	1.47E-13	2.40E-13	9.48E-13
3.16	9.91E-14	1.49E-13	2.43E-13	9.53E-13
5.62	1.00E-13	1.50E-13	2.44E-13	9.55E-13
10	1.01E-13	1.51E-13	2.45E-13	9.56E-13
31.6	1.02E-13	1.52E-13	2.46E-13	9.57E-13
50	1.02E-13	1.52E-13	2.46E-13	9.58E-13
100	1.02E-13	1.52E-13	2.46E-13	9.58E-13
1000	1.02E-13	1.52E-13	2.46E-13	9.58E-13

Table S20A. The temperature–pressure dependent rate coefficient k(T,p) (in cm³ molecule⁻¹ s⁻¹) of HO₂ + C₃H₇CHO (reaction R3) reaction as calculated by dual-level DL-MS-CVT/SCT/SS-QRRK

^aThe specific reaction parameter scale factor and multistructural torsional anharmonicity factor are used. The HPL rate constants in this table agree with those in Table S10.

p(bar)	350 K	330 K	310 K	298K
0.0316	1.27E-15	2.18E-15	3.80E-15	5.35E-15
0.1	2.46E-15	3.96E-15	6.45E-15	8.70E-15
0.178	3.28E-15	5.11E-15	8.04E-15	1.06E-14
0.316	4.24E-15	6.39E-15	9.69E-15	1.25E-14
0.562	5.32E-15	7.74E-15	1.13E-14	1.43E-14
1	6.45E-15	9.07E-15	1.29E-14	1.60E-14
1.78	7.57E-15	1.03E-14	1.42E-14	1.73E-14
3.16	8.58E-15	1.13E-14	1.52E-14	1.83E-14
5.62	9.45E-15	1.22E-14	1.60E-14	1.91E-14
10	1.01E-14	1.28E-14	1.65E-14	1.96E-14
31.6	1.10E-14	1.35E-14	1.71E-14	2.01E-14
50	1.12E-14	1.37E-14	1.72E-14	2.02E-14
100	1.13E-14	1.38E-14	1.73E-14	2.03E-14
1000	1.15E-14	1.39E-14	1.74E-14	2.03E-14
p(bar)	270 K	250 K	230 K	190 K
0.0316	1.23E-14	2.32E-14	4.60E-14	2.39E-13
0.1	1.80E-14	3.14E-14	5.76E-14	2.62E-13
0.178	2.08E-14	3.50E-14	6.22E-14	2.70E-13
0.316	2.34E-14	3.81E-14	6.58E-14	2.74E-13
0.562	2.56E-14	4.06E-14	6.85E-14	2.78E-13
1	2.74E-14	4.24E-14	7.04E-14	2.79E-13
1.78	2.87E-14	4.37E-14	7.16E-14	2.81E-13
3.16	2.97E-14	4.46E-14	7.24E-14	2.81E-13
5.62	3.03E-14	4.51E-14	7.28E-14	2.82E-13
10	3.07E-14	4.54E-14	7.31E-14	2.82E-13
31.6	3.11E-14	4.57E-14	7.34E-14	2.82E-13
50	3.11E-14	4.58E-14	7.34E-14	2.82E-13
100	3.12E-14	4.58E-14	7.34E-14	2.82E-13
1000	3.12E-14	4.59E-14	7.35E-14	2.82E-13

Table S20B. The temperature–pressure dependent rate coefficient k(T,p) (in cm³ molecule⁻¹ s⁻¹) of HO₂ + C₃H₇CHO (reaction R3) reaction as calculated by the ME/RRKM with the higher level of electronic structure^a (CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S)

^aThe standard scale factor is used from the standard method.

H^{a}	T^{a} (K)	P ^a (mbar)	$[NO_3]_a$	k _{NO3b}	k _{NO3b}	k _{NO3b}	$\tau_{NO_{3c}}$	$\tau_{NO_{3c}}$	$\tau_{NO_{3c}}$
	(K)	(moar)							
0	290.2	1013	3.2×10^{8}	1.91×10 ⁻¹⁴	1.48×10^{-14}	1.55×10 ⁻¹⁴	1.64×10^{5}	2.11×10^{5}	2.02×10^{5}
5	250.5	495.9	5.7×10 ⁶	5.19×10 ⁻¹⁵	4.49×10 ⁻¹⁵	4.03×10 ⁻¹⁵	3.38×10 ⁷	3.91×10 ⁷	4.35×10 ⁷
10	215.6	242.8	2.5×10 ⁵	1.11×10 ⁻¹⁵	1.09×10 ⁻¹⁵	8.19×10 ⁻¹⁶	3.60×10 ⁹	3.67×10 ⁹	4.88×10 ⁹
15	198	118.8	1.5×10 ⁵	4.17×10 ⁻¹⁶	4.42×10 ⁻¹⁶	2.96×10-16	1.60×10 ¹⁰	1.51×10 ¹⁰	2.25×10 ¹⁰

Table S21. NO₃ concentrations (molecules/cc), the rate coefficients (cm³ molecule⁻¹ s⁻¹), and the atmospheric lifetimes (s) with respect to bimolecular reaction as functions of altitude

^a*H* denotes altitude (atmospheric scale height); *T* denotes temperature; *p* denotes pressure; $[NO_3]$ denotes concentration.²⁰

 ${}_{b}^{k} {}_{NO_{3}}^{n}; {}_{ANO_{3}}^{n} {}_{and}^{m} {}_{are}^{m}$ from the experimental rate coefficients of the NO₃ reactions with RCHO (R = C₅H₁₁, C₄H₉, and C₃H₇). The preferred rate coefficients (in cm³ molecule⁻¹ s⁻¹) of the previous literature.²¹

literature.²¹ $\tau_{NO_3}^{'}$; $\tau_{NO_3}^{''}$ and $\tau_{NO_3}^{'''}$ are the atmosphere lifetimes of OH react with RCHO (R = C₅H₁₁, C₄H₉, and C₃H₇).

Pathway	Formula	C*(298 K) ^a (g/m ³)	C*(298 K) ^b (g/m)	Volatility bin
OH oxidation	C ₆ H ₁₂ O ₃	2.29E+06	3.96E+06	IVOC
	C ₆ H ₁₂ O ₅	2.28E+03	1.78E+04	IVOC
	C ₆ H ₁₂ O ₄	1.66E+04	2.91E+04	IVOC
	C ₆ H ₁₀ O ₄	1.62E+05	5.07E+05	IVOC
HO ₂ oxidation	C ₆ H ₁₄ O ₃	1.13E+04	2.57E+04	IVOC
	C ₆ H ₁₂ O ₄	7.99E+02	3.28E+03	IVOC
	C ₆ H ₁₄ O ₅	9.94E+00	1.15E+02	SVOC
	C ₆ H ₁₄ O ₄	7.49E+01	1.88E+02	SVOC
	C ₆ H ₁₂ O ₄	2.21E+02	1.33E+03	SVOC

Table S22. Volatility estimation of the products from hexanal oxidation.

^aEstimation using EVAPORATION ^bestimation using SIMPOL1

	Н	-0.87923900	-0.86675500	0.00000000
HO ₂	0	0.05495200	-0.59862600	0.00000000
	0	0.05495200	0.70697000	0.00000000
	С	-1.01135400	0.40855500	-0.52911500
	Н	-1.73263600	1.19241500	-0.76296000
	Н	-0.69610300	-0.03078000	-1.47622100
	C	0.19963900	1.03687500	0.14582500
	Н	0.54240500	1.93256700	-0.38394700
	Н	-0.03479900	1.37509600	1.16093200
C_4H_8O	C	1.39461800	0.12580300	0.23543700
	Н	2.25630000	0.52971600	0.80192500
	0	1.46293000	-0.95991900	-0.27029800
	C	-1.67006400	-0.65936300	0.33839400
	Н	-2.53510700	-1.09215500	-0.16190300
	Н	-0.97058000	-1.46464000	0.55707800
	Н	-2.00994900	-0.23408300	1.28423400
	C	-1.21829900	-0.06267300	0.50915800
	Н	-0.70093600	-0.97807500	0.80005300
	Н	-1.34470200	0.53381600	1.41708400
	C	-0.34943700	0.71113300	-0.47842800
	Н	-0.85629200	1.63762600	-0.75663200
	Н	-0.23231700	0.12394200	-1.39163700
	C	1.02829300	1.03971900	0.07688300
$C_{\epsilon}H_{10}O$	Н	1.55342100	1.77490900	-0.54276800
031100	Н	0.96523000	1.49536600	1.07095200
	C	1.94785300	-0.14781900	0.17960900
	Н	2.92637200	0.05180700	0.65832200
	0	1.69163900	-1.24586700	-0.23009100
	C	-2.58297400	-0.40589200	-0.07493200
	H	-3.20003800	-0.94730500	0.64092800
	H	-3.12121600	0.49745700	-0.36619900
	H	-2.47525000	-1.02941000	-0.96311400
		3.14059400	0.55855800	0.30642400
		3.31813000	0.11219100	1.28595500
		2.8569/800	1.59984800	0.46411400
	H	4.081/9500	0.54/01600	-0.24194100
		2.04494000	-0.19191/00	-0.44111800
		1.8991/500	0.25455700	-1.42/80100
	H C	2.33032800	-1.22585500	-0.01322000
$C_6H_{12}O$		0./1/18000	-0.18411800	0.30/08000
		0.39720300	0.040/0300	1 20050200
		0.03700700	-0.02403000 0.04721000	1.27730300
		-0.3/910000	-0.94/21000	-0.42704200
		-0.00009400	-1.90312200	-0.300/3000
		-0.51050700	-0.31620200	-1. 1 2320000 0.20060/00
		-1./139/200	-0.91337700	-0.11653300
	11	-2.72300700	-1.03711000	-0.11022200

Table S23. The Cartesian coordinates (Å) of the optimized geometries by M06-2X /MG3S

	Н	-1.60558400	-1.19379000	1.35349800
	C	-2.40806200	0.41944800	0.25169400
	Н	-3.33970200	0.48971700	0.84638600
	0	-2.02881200	1.36247300	-0.38557900
	С	-1.98464200	0.27028700	-0.14054800
	Н	-2.14086800	-0.14288900	-1.13790100
	Н	-2.97120500	0.45273900	0.28671800
	С	-1.26986600	-0.76420900	0.71741100
	Н	-0.99007200	-0.35701600	1.69433300
	Н	-1.91065900	-1.62697700	0.93319600
	C	-0.02160400	-1.32327800	0.10913600
C1 C	Н	0.56838400	-1.99168800	0.75900800
CIC	0	0.33940800	-1.11519000	-1.02700200
	Н	1.79724400	-0.07057900	-0.85848600
	0	2.33306500	0.54010900	-0.29786000
	0	1.78398400	0.49712400	0.87878500
	С	-1.21525700	1.58378200	-0.23914100
	H	-0.25828600	1.44265200	-0.73772500
	Н	-1.78080700	2.32360300	-0.80368300
	H	-1.01717200	1.99432100	0.75200000
	С	-1.42951600	0.63649500	-0.76973500
	H	-0.41444600	0.75241400	-1.15136700
	Н	-2.09601200	0.84355000	-1.60880800
	C	-1.65259900	-0.81335000	-0.33535600
	Н	-1.51728600	-1.47322400	-1,19336700
	Н	-2.68599200	-0.93015700	-0.00175100
	C	-0.72984000	-1.27697700	0.78429400
	Н	-0 75689700	-0.61219300	1 65192100
	Н	-1 03252500	-2 25823300	1 16831800
C1B	C	0 70621900	-1 42263100	0 38818800
CID	Н	1 40781200	-1 64693300	1 20973800
	0	1 11538100	-1 34762300	-0 74836800
	н	2 01188900	0.21016800	-0.81793700
	0	2 19794700	1 09268700	-0.41628300
	0	1 57127100	1 09054100	0 72147900
	C	-1 68448800	1 65426000	0 33738600
	Н	-1 61430500	2 67100500	-0.04668800
	Н	-2 68144600	1 52514500	0.76344300
	Н	-0.95624400	1.56683200	1 14321400
	II C	-2 90532500	0.60333500	-0.03542000
		-3 /00502000	0.00555500	-0.03342000
	Ч	-2 37861100	1 50628100	-0.34762000
		-2.37801100	0.87505600	0.76717100
		-1.01015300	-0.46098200	0.70717100
C1A		-1.9101000	-0.+0096200	1 25605100
		-1.55650200	-0.07003100	0 77323300
		-2.77213100	-1.3-30/300	_0 7189/000
		-0.20224200	0.00303300	-0.71094000 _1 100/8700
		-0.7/100/00	-1 26270200	
	11	-1.30333000	-1.202/0000	-1.34417100

	С	0.07678400	-1.91162900	-0.33296700
	Н	0.65253800	-2.18799300	-1.21737000
	Н	-0.42839500	-2.81578600	0.01354800
	C	1.04401200	-1.45540200	0.75266500
	Н	0.53141600	-1.12856000	1.66095000
	Н	1.69441800	-2.27755400	1.07425300
	C	1.96505500	-0.34734400	0.34717800
	Н	2.57610500	0.08549200	1.15789600
	0	2.09665700	0.05758600	-0.78556000
	Н	1.30254400	1.67663100	-0.80979900
	0	0.68293700	2.31818000	-0.38670600
	0	0.36427800	1.78556900	0.75475300
	С	-1.75435300	0.20776600	0.38015700
	Н	-1.69735200	0.07826300	1.46351600
	Н	-1.84647100	1.28063900	0.20305600
	C	-0.46460100	-0.30560600	-0.25057200
	Н	-0.34184000	-1.37185800	-0.05541400
	Н	-0.49078400	-0.17888700	-1.33881400
	C	0.75630900	0.41106400	0.28007400
MIC	Н	0.86520800	0.30811000	1.35903300
MIC	0	0.81598900	1.74853800	-0.02737200
	Н	0.57078200	1.88103000	-0.94817900
	0	1.95399800	-0.19814100	-0.30391600
	0	2.16306400	-1.38102000	0.17524700
	C	-2.97898600	-0.51857900	-0.16301300
	Н	-2.91437300	-1.58949700	0.03162900
	Н	-3.89456700	-0.14834200	0.29532800
	Н	-3.06522300	-0.38234600	-1.24171400
	C	2.59581600	-0.43430800	-0.18256500
	H	3.33713100	-1.07549900	0.29701400
	Н	2.59505500	-0.70441900	-1.24193500
	C	1.22445200	-0.74518900	0.41484800
	H	1.23828700	-0.52490200	1.48641900
	H	1.01967300	-1.81320000	0.32044800
	C	0.09353500	0.04400400	-0.23798000
	H	0.19819300	1.11174100	-0.04739500
	H	0.10529000	-0.09413800	-1.32570300
M1B	C	-1.26230800	-0.38255200	0.27810100
	H	-1.35439900	-0.26338500	1.35699900
	0	-1.62123600	-1.66998800	-0.03931600
	H	-1.40642600	-1.84885400	-0.95988300
	0	-2.28712000	0.48414400	-0.31028500
	0	-2.22701400	1.68209000	0.17299100
	C	3.01258900	1.02469600	-0.02619700
	H	4.03213200	1.18045300	-0.37584600
	Н	2.36611500	1.69244500	-0.59516100
	H	2.96740800	1.32988900	1.02067900

	С	2.91698200	1.16206700	0.65472700
	Н	3.48990900	0.60544000	1.39862700
	Н	1.96249700	1.43290800	1.10762900
	Н	3.45162800	2.08690300	0.44325100
	C	2.72504200	0.33445900	-0.61212100
	Н	2.10542200	0.88825000	-1.32130200
	Н	3.68944900	0.19398700	-1.10314300
	C	2.11181200	-1.04179100	-0.34891400
	Н	2.81556900	-1.63725900	0.23787400
	Н	1.98305200	-1.56388900	-1.30073200
	C	0.77138200	-1.01168300	0.38607100
MIA	Н	0.90932800	-0.62246600	1.39799800
	Н	0.40301500	-2.03261700	0.50071100
	C	-0.28071800	-0.17059900	-0.32983500
	Н	0.00343600	0.88198000	-0.34610500
	Н	-0.38855200	-0.49140200	-1.37280600
	C	-1.63271600	-0.27062900	0.33955200
	Н	-1.60549200	0.04161600	1.38291300
	0	-2.21346800	-1.51415600	0.28306000
	Н	-2.11168000	-1.87964800	-0.60102900
	0	-2.56160100	0.64518500	-0.32868600
	0	-2.27221700	1.87962700	-0.07446900
	С	0.59329600	1.26856600	-0.25614800
	Н	1.04772700	2.23994900	-0.06637800
	Н	0.64891500	1.09848700	-1.33386400
	0	0.71243100	-0.97076000	0.70255900
	0	0.22723800	-1.44457400	-0.50133000
	C	-0.87108700	1.23755100	0.19759100
	Н	-1.33742200	2.20848200	0.00569600
	Н	-0.91832400	1.07638500	1.27715100
	C	-1.66796800	0.16427400	-0.51092400
TS2B	Н	-0.79382500	-0.80988600	-0.62042800
	Н	-1.84433700	0.38905400	-1.56360300
	C	-2.84927800	-0.40603400	0.22129700
	Н	-3.58304400	0.37942500	0.43165600
	Н	-2.53725500	-0.82599300	1.17844800
	0	2.63793400	-0.03727300	-0.20304300
	Н	2.42332700	-0.41327600	-1.06320800
	C	1.44736400	0.22120300	0.45775500
	Н	1.70759300	0.54893100	1.46479600
	Н	-3.34813800	-1.18406100	-0.35318400
	C	1.70170000	0.07030400	0.34615300
	C	1.02482000	1.07905600	-0.57078500
	Н	1.80091900	1.78035600	-0.87810200
	Н	0.70468800	0.55838300	-1.47585400
152A	0	0.78780200	-0.89286300	0.85971900
	0	0.20029700	-1.56316400	-0.19373600
	C	-0.14220500	1.85246100	0.04696400
	H	-0.48993600	2.57029500	-0.69904300

	Н	0.22021700	2.44285800	0.89147900
	C	-1.33395100	1.00567100	0.50974600
	Н	-2.17974300	1.67245700	0.71905900
	Н	-1.10432000	0.51240700	1.45697800
	C	-1.77859600	-0.03935700	-0.47746400
	Н	-0.77656900	-0.90377300	-0.43948300
	Н	-1.75808200	0.28628100	-1.51893200
	С	-2.99407900	-0.84085700	-0.09839600
	Н	-3.88279400	-0.20192600	-0.08151000
	Н	-3.18123400	-1.65136400	-0.80068200
	Н	-2.87724300	-1.26905300	0.89755500
	0	2.77927300	-0.54955000	-0.27201900
	Н	2.43738500	-1.06328900	-1.01135100
	Н	2.08160700	0.54731600	1.25086300
	С	0.01197900	-1.28492800	0.36319700
	Н	-0.13837600	-2.11039100	-0.33481200
	Н	0.49640300	-1.68996900	1.25615700
	0	1.25158200	0.67231600	0.67085300
	0	1.95501200	1.72103200	0.03482800
	С	-1.32880800	-0.64823100	0.72860300
	Н	-1.16015500	0.18683600	1.41256000
	Н	-1.91720500	-1.38529800	1.29315400
	C	-2.09513200	-0.17896800	-0.45928900
M2B	Н	2.80999600	1.31088900	-0.15431600
	Н	-2.07296300	-0.79160700	-1.35278600
	C	-3.15580200	0.85220000	-0.31771900
	Н	-2.79181200	1.71104900	0.25089800
	Н	-4.02773500	0.46597100	0.22683500
	0	2.15496200	-0.91352600	-0.73353200
	Н	2.47884700	-1.49668900	-0.04001000
	С	0.96871300	-0.30961600	-0.29456800
	Н	0.53495700	0.17151400	-1.17209800
	Н	-3.51011200	1.20637300	-1.28411600
	С	1.61207700	-0.26726100	-0.28056600
	0	1.32522100	0.87298400	0.49091700
	0	1.89919500	1.99329500	-0.15473900
	Н	2.84553500	1.84427100	-0.02330500
	Н	1.24234800	-2.32831300	-0.02007300
	Н	0.81738600	-1.34065200	1.37753200
	C	0.76766300	-1.39520600	0.28535100
	С	-0.68645700	-1.38977100	-0.18249500
M2A	Н	-1.17940900	-2.27173500	0.23273700
	Н	-0.71542400	-1.50749400	-1.26887900
	C	-1.48996800	-0.15034400	0.20818500
	H	-1.07777000	0.73901400	-0.27712300
	Н	-1.35382500	0.03661800	1.28507400
	Ċ	-2.93493400	-0.27634400	-0.12101800
	Н	-3.37735600	-1.26469200	-0.13568000
	C	-3.82419500	0.91398100	-0.07844400

	Н	-4.80426400	0.70720200	-0.50494800
	Н	-3.98355600	1.26434100	0.95001700
	H	-3.38303200	1.75333800	-0.62180500
		2.98974100	-0.52882800	-0.24541700
	H	3.21172900	-0.88482300	0.62069900
	П	1.37926800	-0.03701300	-1.32641300
		2.12816300	-0.41368200	-0.19591900
	0	2.06475200	0.92593400	0.23067700
	0	2.67368800	1.73107700	-0.76010500
	Н	3.60736300	1.49452800	-0.67339300
	Н	1.55211300	-2.24586800	0.68095800
	Н	1.43111900	-0.86103700	1.76533800
	С	1.23586900	-1.20442100	0.74441800
	С	-0.25563400	-1.11313500	0.42324200
	Н	-0.79858500	-1.75117400	1.12346500
	Н	-0.43388500	-1.53712900	-0.56679800
	C	-0.82691800	0.30113900	0.48535500
	Н	-0.41362300	0.92156200	-0.31175000
C3A	Н	-0.53386700	0.77907300	1 42402200
	C	-2 34356100	0 34688700	0 40183700
	н	-2 79669200	-0 27886000	1 17170100
		2.79009200	1 75465800	0.42241700
		-2.89700200	1.73403800	0.42241700
		-5.96504500	2.24615000	1.25220000
	H	-2.615/0800	2.24615000	1.35220000
	H	-2.49093900	2.33236800	-0.40711300
	0	3.46059100	-0.84744200	-0.20027100
	Н	3.74522600	-0.97777300	0.70977900
	Н	1.79530400	-0.47265600	-1.23412900
	0	-2.76311600	-0.23094600	-0.86588800
	0	-2.97420500	-1.50662100	-0.78787300
	C	-1.58473400	0.27622300	-0.24101200
	0	-1.47954100	-0.81873500	0.67545600
	0	-1.41530900	-1.97442500	-0.02135600
		-0.23260900	-2.16043100	-0.02032200
	п	-1.98/4/200	2.23741300	0.45059200
	C	-1.15865800	1.53402400	0.49973900
TS3A	C	0.10676100	2.18742500	-0.06107500
	Н	0.15694700	3.20448800	0.32995500
	Н	0.00715100	2.28748100	-1.14591100
	C	1.44175600	1.51161000	0.26329800
	H	1.57291200	1.43470400	1.34643300
	H	2.24344100	2.15861600	-0.09710200
		1.68228600	0.12656900	-0.32505600

	Н	1.18848800	0.00573700	-1.29262600
	C	3.15575000	-0.21612400	-0.45185300
	Н	3.27385500	-1.25335200	-0.75817200
	Н	3.62531900	0.42676700	-1.19537900
	Н	3.65657600	-0.06942300	0.50532500
	0	-2.89198900	0.40287600	-0.68618100
	Н	-3.13280800	-0.40240800	-1.15550600
	Н	-0.92123500	0.02853900	-1.07384200
	0	1.07254500	-0.80645400	0.58737900
	0	0.92834100	-2.01582600	0.00263200
	С	-1.80129600	0.04544100	0.53112000
	0	-2.93284800	-0.66670900	-0.08573000
	0	-3.84050700	0.15514500	-0.49906700
	Н	1.73630800	-2.40426500	-0.52961300
	Н	-0.59712500	-0.03636200	-1.22404500
	Н	-1.74593200	1.29380100	-1.16134200
	C	-1.02219100	0.72926000	-0.57319300
	C	0.05471000	1.69102000	-0.06001600
	Н	-0.41660500	2.38519800	0.64007600
	Н	0.39264000	2.29880800	-0.90297700
	C	1.28375400	1.07922300	0.62043100
	Н	0.99233200	0.36548600	1.39173500
M3A	Н	1.82527000	1.87756900	1.13295600
	C	2.28325000	0.42430300	-0.32437000
	Н	2.55279500	1.13292300	-1.11333900
	C	3.53369000	-0.06025600	0.38654400
	Н	4.20122100	-0.56082300	-0.31388900
	Н	4.06494600	0.78348900	0.82471000
	Н	3.27549800	-0.75075200	1.18828100
	0	-1.10960900	-0.89139100	1.24914600
	Н	-0.45488600	-1.32061900	0.68233400
	Н	-2.25716700	0.75585700	1.22153800
	0	1.69554100	-0.61968700	-1.10715700
	0	1.24232400	-1.63663900	-0.22213300
	С	1.94781200	-0.32697900	0.21695600
	0	0.95111100	-1.21180100	0.78226100
	0	0.18414900	-0.63247300	1.76263500
	Н	-0.50040100	-2.09543200	-0.30614800
	Н	1.44990900	1.38551600	1.41450400
	Н	2.63102900	1.62826700	0.14656400
	C	1.66705800	1.16843800	0.36923500
TS4A	C	0.62817500	1.81483900	-0.55684700
	Н	0.73473900	1.42103000	-1.56855300
	H	0.87928300	2.87319800	-0.63281400
	C	-0.83578100	1.73449100	-0.12035900
	H	-1.45657400	2.25261900	-0.85965600
	H	-0.97346500	2.26078800	0.82679500
	C	-1.37245600	0.33690200	0.06346600
	H	-0.70463700	-0.12894100	1.08781500

	С	-2.83350800	0.19919000	0.39750200
	Н	-3.09536900	-0.83588500	0.59704900
	Н	-3.06676200	0.80181000	1.27358200
	Н	-3.43510300	0.55662000	-0.44262800
	0	2.09520600	-0.74609500	-1.09136500
	Н	1.24926500	-0.62119100	-1.53967700
	Н	2.88676100	-0.55861800	0.72169700
	0	-0.93302800	-0.43128100	-1.00801600
	0	-1.27324800	-1.79098300	-0.81279500
	C	-1.86864600	-0.52036200	0.15414900
	0	-1.53334500	0.60860700	0.93788100
	0	-1.30440700	1.69381400	0.05224900
	Н	-1.09911800	-1.82279300	-1.31415600
	Н	-0.35358200	-0.23930600	-1.34069000
	C	-0.69726500	-1.03531100	-0.67629800
	C	0.45359700	-1.61374800	0.14827100
	Н	1.12130500	-2.16425500	-0.51824500
	Н	0.05624400	-2.34857700	0.85163900
	C	1.28398200	-0.59416300	0.95563100
п	Н	2.02857600	-1.13365200	1.54196200
Г	Н	0.63687100	-0.03181200	1.62511900
	C	1.97480500	0.37027000	0.02623400
	Н	-0.33046900	1.70071700	-0.02692200
	C	3.35028800	0.00278800	-0.45772400
	Н	3.66589600	0.67040300	-1.25329400
	Н	4.04640400	0.07404700	0.38036900
	Н	3.36747500	-1.03364400	-0.79713400
	0	-2.98880700	-0.27051800	-0.62868400
	Н	-2.82254300	0.55219200	-1.10253800
	Н	-2.15587600	-1.26023300	0.90558900
	0	1.43384100	1.39060600	-0.34310600
ОЦ	Н	0.00000000	0.00000000	-0.86302900
OH	0	0.00000000	0.00000000	0.10787900

Species	Methods	Total energies (a.u.)
	CCSD(T)-F12a/cc-pVTZ-F12	-150.78477083
	CCSD(T)-F12a/cc-pVDZ-F12	-150.76418048
HO ₂	M06-2X /MG3S	150.900055
	M11-L/MG3S	-150.90327500
	CCSD(T)-F12a/cc-pVTZ-F12	-232.17432822
	CCSD(T)-F12a/cc-pVDZ-F12	-232.14694116
C_4H_8O	M06-2X /MG3S	232.425625
	M11-L/MG3S	-232.48220800
	CCSD(T)-F12a/cc-pVTZ-F12	-271.43229796
	CCSD(T)-F12a/cc-pVDZ-F12	-271.40054289
$C_5H_{10}O$	M06-2X /MG3S	271.73146
	M11-L/MG3S	-271.80124100
	CCSD(T)-F12a/cc-pVTZ-F12	-310.69014362
	CCSD(T)-F12a/cc-pVDZ-F12	-310.65401591
$C_6H_{12}O$	M06-2X /MG3S	-311.03714400
	M11-L/MG3S	-311.12010900
	CCSD(T)-F12a/cc-pVTZ-F12	-382.97325135
CIC	CCSD(T)-F12a/cc-pVDZ-F12	-382.92514161
	M06-2X /MG3S	-383.34276500
	M11-L/MG3S	-383.39956700
	CCSD(T)-F12a/cc-pVTZ-F12	-422.23071584
CID	CCSD(T)-F12a/cc-pVDZ-F12	-422.17824229
	M06-2X /MG3S	-422.64868000
	M11-L/MG3S	-422.71800000
	CCSD(T)-F12a/cc-pVTZ-F12	-461.48880852
CIA	CCSD(T)-F12a/cc-pVDZ-F12	-461.43197836
CIA	M06-2X /MG3S	-461.95510000
	M11-L/MG3S	-462.03716100
	CCSD(T)-F12a/cc-pVTZ-F12	-382.96281130
TSIC	CCSD(T)-F12a/cc-pVDZ-F12	-382.91471564
1510	M06-2X /MG3S	-383.33195700
	M11-L/MG3S	-383.38767500
	CCSD(T)-F12a/cc-pVTZ-F12	-422.22071804
TS1B	CCSD(T)-F12a/cc-pVDZ-F12	-422.16825712
	M06-2X /MG3S	-422.63773300

 Table S24. Absolute energies in hartrees

	M11-L/MG3S	-422.70667400
	CCSD(T)-F12a/cc-pVTZ-F12	-461.47855466
	CCSD(T)-F12a/cc-pVDZ-F12	-461.42172361
ISIA	M06-2X /MG3S	-461.94344400
	M11-L/MG3S	-462.02557800
	CCSD(T)-F12a/cc-pVTZ-F12	-382.98427872
M1C	CCSD(T)-F12a/cc-pVDZ-F12	-382.93604158
MIC	M06-2X /MG3S	-383.35517900
	M11-L/MG3S	-383.40595900
	CCSD(T)-F12a/cc-pVTZ-F12	-422.24132412
M1D	CCSD(T)-F12a/cc-pVDZ-F12	-422.18872183
MIB	M06-2X /MG3S	-422.66031300
	M11-L/MG3S	-422.72395800
	CCSD(T)-F12a/cc-pVTZ-F12	-461.49776390
MIA	CCSD(T)-F12a/cc-pVDZ-F12	-461.44175597
MIA	M06-2X /MG3S	-461.96602600
	M11-L/MG3S	-462.04216200
	CCSD(T)-F12a/cc-pVTZ-F12	-422.20485011
TS2B	CCSD(T)-F12a/cc-pVDZ-F12	-422.15198348
1320	M06-2X /MG3S	-422.62374300
	M11-L/MG3S	-422.69264900
	CCSD(T)-F12a/cc-pVTZ-F12	-461.46458422
	CCSD(T)-F12a/cc-pVDZ-F12	-461.40733252
152A	M06-2X /MG3S	-461.93244200
	M11-L/MG3S	-462.01315900
	CCSD(T)-F12a/cc-pVTZ-F12	-422.22428420
M2B	CCSD(T)-F12a/cc-pVDZ-F12	-422.17140789
	M06-2X /MG3S	-422.64330000
	M11-L/MG3S	-422.71178800
	CCSD(T)-F12a/cc-pVTZ-F12	-461.48029127
	CCSD(T)-F12a/cc-pVDZ-F12	-461.42304068
MIZA	M06-2X /MG3S	-461.94702400
	M11-L/MG3S	-462.02884100
C2 A	CCSD(T)-F12a/cc-pVDZ-F12	-611.66312653
	M06-2X /MG3S	-612.32775100
TS2 A	CCSD(T)-F12a/cc-pVDZ-F12	-611.63268729
1554	M06-2X /MG3S	-612.29906800

M2 A	CCSD(T)-F12a/cc-pVDZ-F12	-611.66202340
MJA	M06-2X /MG3S	-612.32740400
TC4A	CCSD(T)-F12a/cc-pVDZ-F12	-611.62775038
184A	M06-2X /MG3S	-612.29441600
M4A	CCSD(T)-F12a/cc-pVDZ-F12	-536.04674838
	M06-2X /MG3S	-536.64187700
ОН	CCSD(T)-F12a/cc-pVDZ-F12	-75.66379802
	M06-2X /MG3S	-75.72913400

Figure S1. Example mass spectrum of gas-phase products of (A) hexanal + HO₂ and (B) pentanal + HO₂ in the presence of O₃, TME (C₆H₁₂), and methanol (see experimental conditions described in the main text). In (A), the high abundance of C₆H₁₄O₃ is likely from both TME and hexanal, leading to ambiguity in confirming the hexanal + HO₂ reaction. But in the insert of (A), the mass spectrum is from ozonolysis of a-pinene (C₁₀H₁₆) + hexanal + methanol, and it shows a C₆H₁₄O₃ peak, indicative of the hexanal + HO₂ chemistry. Under similar conditions but without hexanal (i.e., control conditions of a-pinene + O₃ + methanol), the C₆H₁₄O₃ peak was not present.

Figure S2. The relative enthalpies of all the H-shift reactions of the adduct M1A ($C_6H_{13}O_5$) at the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard scale factor at 0 K.

Figure S3. The relative enthalpies of all the H-shift reactions of the adduct M1B ($C_5H_{11}O_5$) at the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard scale factor at 0 K.

Figure S4. The relative enthalpies of all the H-shift reactions of the adduct M1C ($C_4H_9O_5$) at the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard scale factor at 0 K.

Figure S5. The relative enthalpies of all the H-shift reactions of the adduct C_3A ($C_6H_{13}O_5$) at the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard scale factor at 0 K.

Figure S6. The relative enthalpies of all the H-shift reactions of the adduct M3A ($C_6H_{13}O_5$) at the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard scale factor at 0 K.

Figure S7. The relative enthalpies of all the H-shift reactions of the adduct C5A ($C_6H_{13}O_7$) at the CCSD(T)-F2a/cc-pVDZ-F12//M06-2X/MG3S level with the standard scale factor at 0 K.

Input file for MESS for the bimolecular reaction of $HO_2 + C_5H_{11}CHO$

! Global Section					
TemperatureList[K]		190. 200. 210. 220. 230. 240. 250. 260. 270. 280.			
290. 298. 300. 310. 320. 330. 34	0. 350.				
PressureList[bar]	0	0.0316 0.1 0.178 0.	316 0.562 1. 1	.01325 1.78 3.16	
5.62 10. 31.6 50. 100. 1000.					
EnergyStepOverTemperature		.2			
ExcessEnergyOverTemperature		30			
ModelEnergyLimit[kcal/mol]		400			
CalculationMethod		direct			
WellCutoff		10			
ChemicalEigenvalueMax		.2			
ChemicalEigenvalueMin		1.e-10			
! Model Section					
Model					
EnergyRelaxation					
Exponential					
Factor[1/cm]		300			
Power		0			
ExponentCutoff		30			
End					
CollisionFrequency					
LennardJones					
Epsilons[1/cm]		82. 227.11			
Sigmas[angstrom]		3.74 4.45			
Masses[amu]		28. 133.08	! N2 HO2+	C6H12O	
End					
!Species					
Well W1 #C1A	CCSI	D(t)			
Species		~ /			
RRHO					
Geometry[angstrom]	22				
С	-2.90532500	0.60333500	-0.03542000		
Н	-3.49950200	0.25230500	-0.88045100		
Н	-2.37861100	1.50628100	-0.34762000		
Н	-3.58938200	0.87595600	0.76717100		
С	-1.91015300	-0.46098200	0.41180300		
Н	-1.33896200	-0.07083100	1.25605100		
Н	-2.44213100	-1.34587300	0.77323300		
С	-0.96934300	-0.86503900	-0.71894000		
Н	-0.47166700	0.02432200	-1.10948700		
Н	-1.56553600	-1.26270800	-1.54419100		
С	0.07678400	-1.91162900	-0.33296700		
H	0.65253800	-2.18799300	-1.21737000		
Н	-0.42839500	-2.81578600	0.01354800		
Ċ	1.04401200	-1.45540200	0.75266500		
H	0.53141600	-1.12856000	1.66095000		
H	1.69441800	-2.27755400	1.07425300		

С 1.96505500 -0.347344000.34717800 Η 2.57610500 0.08549200 1.15789600 Ο 2.09665700 0.05758600 -0.78556000Η 1.30254400 1.67663100 -0.80979900Ο 0.68293700 2.31818000 -0.38670600 0 0.36427800 1.78556900 0.75475300 Core RigidRotor SymmetryFactor 1 End 60 Frequencies [1/cm] 43.01 61.62 79.60 92.29 129.17 163.82 207.50 219.02 252.02 259.43 274.76 291.17 344.18 461.87 559.30 661.69 707.81 743.96 818.87 853.72 904.03 952.97 967.62 1034.93 1060.53 1097.39 1145.38 1148.45 1227.54 1249.67 1300.64 1303.62 1325.69 1336.68 1382.89 1395.30 1408.17 1415.52 1430.00 1451.29 1486.57 1492.91 1499.55 1505.95 1513.09 1541.11 1815.62 2983.31 3041.07 3046.23 3057.16 3058.74 3066.18 3084.58 3093.14 3107.87 3115.61 3127.19 3135.09 3428.76 ZeroEnergy[kcal/mol] -6.81 End End Well W2 # M1A CCSD(t) Species RRHO Geometry[angstrom] 22 С 2.91698200 1.16206700 0.65472700 Η 3.48990900 0.60544000 1.39862700 Η 1.96249700 1.43290800 1.10762900 Η 3.45162800 2.08690300 0.44325100 С 2.72504200 0.33445900 -0.61212100 Η 2.10542200 0.88825000 -1.32130200Η 3.68944900 0.19398700 -1.10314300С 2.11181200 -1.04179100-0.34891400Η 2.81556900 -1.63725900 0.23787400 Η 1.98305200 -1.56388900 -1.30073200 С 0.77138200 -1.01168300 0.38607100 Η 0.90932800 -0.62246600 1.39799800 Η 0.40301500 -2.03261700 0.50071100 С -0.28071800 -0.17059900-0.32983500Η 0.00343600 0.88198000 -0.34610500 Η -0.38855200 -0.49140200 -1.37280600С -0.27062900 -1.632716000.33955200 Η -1.60549200 0.04161600 1.38291300 0 -2.21346800 -1.51415600 0.28306000 Η -2.11168000 -1.87964800 -0.60102900 0 -2.56160100 0.64518500 -0.32868600 Ο -2.27221700 1.87962700 -0.07446900 RigidRotor Core

SymmetryFactor

1

End			
Frequencies[1/cm]	6	50	
42.39 54.62 104.85 125.	72 148.39 199.	04 249.46 290.37	298.12 351.42
370.97 469.07 504.13 51	8.58 571.79 73	0.97 790.81 853.	51 871.40 956.65
965.51 993.20 1018.00 1	039.99 1109.4	0 1122.94 1138.2	0 1189.36 1211.95
1259.87 1291.00 1300.4	9 1311.84 1327	.79 1361.16 1372	2.01 1381.82 1391.89
1411.63 1419.46 1434.0	8 1484.04 1494	.10 1499.52 1505	5.13 1510.76 1521.11
3032.98 3047.53 3055.8	6 3061.32 3062	.44 3084.24 3093	3.51 3100.35 3118.72
3125.06 3128.53 3136.6	1 3864.91		
ZeroEnergy[kcal/mol]		-10.34	
End			
End			
Bimolecular	R	#	
Fragment	C6H	120	
RRHO			
Geometry[angstrom]		19	
С	3.14059400	0.55855800	0.30642400
Н	3.31813000	0.11219100	1.28595500
Н	2.85697800	1.59984800	0.46411400
Н	4.08179500	0.54701600	-0.24194100
Ċ	2.04494000	-0.19191700	-0.44111800
H	1.89917500	0.25455700	-1.42780100
H	2.35632800	-1.22585500	-0.61322600
C	0.71718600	-0.18411800	0.30708000
Ĥ	0.39720500	0.84870300	0.46310300
H	0.85988900	-0.62483600	1.29950300
C	-0.37916000	-0.94721000	-0.42984200
H	-0.06869400	-1.98512200	-0.56673600
H	-0.51056700	-0.51820200	-1.42528800
Ċ	-1.71397200	-0.91557700	0.29969400
H	-2.42360400	-1.63911000	-0.11653300
H	-1.60558400	-1.19379000	1.35349800
Ċ	-2.40806200	0.41944800	0.25169400
Ĥ	-3.33970200	0.48971700	0.84638600
0	-2.02881200	1.36247300	-0.38557900
Core RigidRote)r	1100217000	0.00007900
SymmetryFactor	1		
End	1		
Frequencies[1/cm]	51		
71 88 75 59 134 33 149	79 205 19 240	29 271 70	
390.97 400.25 667.38 7	08.07 738.73 8	809.10.878.12	
907 30 947 92 973 03 10	43.22.1068.01	1095.12.1146.15	1158.10
1234 60 1255 17 1302 7	6 1319 91 1338	27 1374 15 1387	7 80
1410.65 1416.35 1426.2	6 1452.00 1485	38 1491.78 1502	2.02
1506.00 1514.77 1861.5	2 2938.85 3033	44 3040.19 3047	7.34 3059.13
3060.66 3071.36 3075.9	2 3091 18 3110	49 3126 06 3134	100
ZeroEnergy[kcal/mol]	0		
ElectronicLevels[1/cm]	1		
0 2	-		

End				
Fragment	HO2			
RRHO				
Geometry[angstrom]		3		
Н	-0.87923900	-0.86675500	0.00000000	
0	0.05495200	-0.59862600	0.00000000	
0	0.05495200	0.70697000	0.00000000	
Core RigidRoto	or			
SymmetryFactor	1			
End	_			
Frequencies[1/cm]	3			
1264.87 1469.59 3703	3.12			
ZeroEnergy[kcal/mol]	0			
ElectronicLevels[1/cm]	1			
0 2				
End	0			
GroundEnergy[kcal/mol]	0			
End				
Barriers				
Barrier BI K WI	# C14	I		
KKHU	~ 2			
Stoichiometry C6H130	J3			
Core PhaseSpace	Theory	0		
FragmentGeometry[ar	ngstrom I	.9	0 20(12100	
U	3.14059400	0.55855800	0.30642400	
H	3.31813000	0.11219100	1.28595500	
H	2.83097800	1.39984800	0.40411400	
Н	4.081/9300	0.34/01000	-0.24194100	
	2.04494000	-0.19191700	-0.44111600	
П U	1.69917300	0.23433700	-1.42/60100	
	2.33032800	-1.22383300	-0.01322000	
С И	0.71718000	-0.10411000	0.30708000	
11 Н	0.39720300	-0.62483600	1 20050300	
	0.83988900	-0.02483000	0.42084200	
н	-0.37910000	-1.98512200	-0.42984200	
H	-0.51056700	-0.51820200	-1 42528800	
C III	-0.31030700	-0.91557700	0 29969400	
Н	-2 42360400	-1 63911000	-0 11653300	
Н	-2.42500400	-1 19379000	1 35349800	
C	-2 40806200	0 41944800	0 25169400	
н	-3 33970200	0.48971700	0.84638600	
0	-2 02881200	1 36247300	-0 38557900	
FragmentGeometry[a	rostrom] 3	1.50247500	-0.30337700	
H	-0.87923900	-0 86675500	0.00000000	
0	0.05405200	-0 59862600	0.00000000	
õ	() () (49 \/(0)			
	0.05495200	0.70697000	0.00000000	
SymmetryFactor	0.05495200	0.70697000	0.00000000	

PotentialPowerExpon	ent 6		
End			
Frequencies[1/cm]	54		
71.88 75.59 134.33 14	9.79 205.19 24	0.29 271.70	
390.97 400.25 667.38	708.07 738.73	809.10 878.12	
907.30 947.92 973.03 1	043.22 1068.01	1 1095.12 1146.1	5 1158.10
1234.60 1255.17 1302.	76 1319.91 133	8.27 1374.15 138	87.80
1410.65 1416.35 1426.	26 1452.00 148	5.38 1491.78 150	02.02
1506.00 1514.77 1861.	52 2938.85 303	3.44 3040.19 304	47.34 3059.13
3060.66 3071.36 3075.	92 3091.18 311	0.49 3126.06 313	34.00
1264.87 1469.59 3703.	12		
ZeroEnergy[kcal/mol]	-6.8	1	
ElectronicLevels[1/cm]	1		
0 2			
End			
Barrier B2 W1 W2	# TS	51A	
RRHO			
Geometry[angstrom]	22		
C	-4.29348900	0.29699600	-0.06437100
Н	-4.60356800	-0.72064100	0.17704300
Н	-4.38725600	0.42372800	-1.14378800
Н	-4.99201500	0.98187600	0.41461300
C	-2.86038800	0.54879200	0.38850500
H	-2.57701700	1.57989900	0.16260400
Н	-2.79109900	0.44229600	1.47398300
C	-1.86403600	-0.39822600	-0.27023100
H	-1.93116700	-0.29281300	-1.35769000
Н	-2 14603800	-1 43177600	-0.04491600
C	-0 42832000	-0 15528300	0 17908500
Ч Н	-0 35409800	-0.26396900	1 26230500
Н	-0 14321500	0.87505000	-0.05026700
C	0 55485100	-1 10773600	-0 48603700
Ч Н	0.29669300	-2 14597200	-0 24747700
Н	0.51753100	-1 02506300	-1 57476900
C	1 97653000	-0.91930300	-0.04279800
С Н	2 72928200	-1 47934400	-0.61016900
0	2 25859500	-0 55587200	1 13600700
Н	2 63067800	0.62387300	0.90065000
0	2.05007000	1 42769500	0.07902000
Ő	2.70575500	0.73335300	-0.91340600
Tunneling	Eck	art	0.915 10000
ImaginaryFrequency[1/cm]	689 33	
WellDepth[kcal/mol]	l/emj	5 13	
WellDepth[kcal/mol]		8.64	
End		0.04	
Core DigidPotor			
SymmetryFactor	1		
Fnd	1		
Ena Frequencies[1/cm]	50		
	59		

```
End
End
```

Input file for MESS for the bimolecular reaction of $HO_2 + C_4H_9CHO$

! Global Section				
TemperatureList[K]	0.250	190. 200. 210. 22	20. 230. 240. 25	0. 260. 270. 280.
290. 298. 300. 310. 320. 330. 34	0. 350.	00160101700	216 0 562 1 1	70 2 1 (5 (2 10
PressureList[bar] 31.6.50, 100, 1000	Û	0.0316 0.1 0.178 0	.316 0.562 1. 1.	78 3.16 5.62 10.
EnergyStenOverTemperature		2		
ExcessEnergyOverTemperature		.2		
ModelEnergyU imit[keel/mel]		400		
Calculation Mathed		400		
		10		
ChemicalEigenvalueMax		.2		
ChemicalEigenvalueMin		1.e-11		
! Model Section				
Model				
EnergyRelaxation				
Exponential				
Factor[1/cm]		300		
Power		0		
ExponentCutoff		15		
End				
CollisionFrequency				
LennardJones				
Epsilons[1/cm]		82. 222.66		
Sigmas[angstrom]		3.74 4.27		
Masses[amu]		28. 119.07	! N2 HO2	+C5H10O
Fnd				
ISpecies				
Well W1 #C1B	CCSI) (t)		
Species	CCDL)(1)		
BBHO				
Geometry[angstrom]	10			
C	1 42051600	0.63640500	0 76073500	
	-1.42931000	0.03049300	-0.70973300	
11 11	-0.41444000	0.73241400	-1.13130/00	
	-2.09001200	0.04333000	-1.00880800	
	-1.03239900	-0.81555000	-0.55555000	
Н	-1.51/28000	-1.4/322400	-1.19330/00	
H C	-2.08399200	-0.93013/00	-0.001/3100	
C II	-0.72984000	-1.2/09//00	0.78429400	
H	-0./5689/00	-0.61219300	1.65192100	
H	-1.03252500	-2.25823300	1.16831800	
C	0.70621900	-1.42263100	0.38818800	
H	1.40781200	-1.64693300	1.209/3800	
0	1.11538100	-1.34762300	-0.74836800	
Н	2.01188900	0.21016800	-0.81793700	
0	2.19794700	1.09268700	-0.41628300	
0	1.57127100	1.09054100	0.72147900	
С	-1.68448800	1.65426000	0.33738600	

Η -1.61430500 2.67100500 -0.04668800Η -2.68144600 1.52514500 0.76344300 Η 1.14321400 -0.95624400 1.56683200 Core RigidRotor SymmetryFactor 1 End 51 Frequencies [1/cm] 58.18 73.04 92.15 107.97 150.54 189.50 228.78 250.98 279.55 285.08 340.87 424.54 553.85 663.44 709.31 762.72 854.20 884.08 918.88 1003.01 1018.14 1087.50 1132.36 1151.06 1230.76 1265.70 1304.39 1320.65 1366.84 1387.94 1401.10 1418.85 1430.61 1449.22 1487.13 1497.23 1506.98 1516.64 1541.41 1814.76 2987.09 3042.83 3059.17 3064.27 3073.30 3085.66 3106.07 3114.87 3131.94 3139.96 3425.23 ZeroEnergy[kcal/mol] -6.67 End End Well W2 CCSD(t)# M1B Species RRHO Geometry[angstrom] 19 С 2.59581600 -0.43430800-0.18256500Η 3.33713100 -1.075499000.29701400 -0.70441900 Η 2.59505500 -1.24193500С 1.22445200 -0.745189000.41484800 Η 1.23828700 -0.52490200 1.48641900 Η 1.01967300 0.32044800 -1.81320000 С 0.09353500 0.04400400 -0.23798000Η 0.19819300 1.11174100 -0.04739500 Η 0.10529000 -0.09413800 -1.32570300С -1.26230800 -0.38255200 0.27810100 Η -1.35439900 -0.26338500 1.35699900 0 -1.62123600 -1.66998800 -0.03931600 Η -1.40642600 -1.84885400 -0.95988300 0 -2.28712000 0.48414400 -0.31028500 0 -2.22701400 1.68209000 0.17299100 С 3.01258900 1.02469600 -0.02619700Η 4.03213200 1.18045300 -0.37584600Η 2.36611500 1.69244500 -0.59516100 Η 2.96740800 1.32988900 1.02067900 Core RigidRotor 1 SymmetryFactor End Frequencies [1/cm] 51 45.71 79.76 112.69 133.96 170.85 257.69 274.35 313.25 348.16 434.76 499.83 506.44 570.27 751.55 802.18 891.25 933.37 974.06 985.95 1021.24 1098.54 1119.85 1129.15 1211.19 1216.44 1276.86 1302.82 1311.95

1322.58 1364.73 1372.65	5 1382.85 1407	.64 1421.71 1433.	73
1486.13 1495.60 1503.93	3 1509.48 1515	.68 3032.14 3048.	06
3053.72 3062.46 3092.47	7 3095.27 3121	.41 3128.98	
3132.57 3140.00 3864.95	5		
ZeroEnergy[kcal/mol]		-11.42	
End			
End			
Bimolecular	R	#	
Fragment	C5H	H10O	
RRHO			
Geometry[angstrom]		16	
C	-1.21829900	-0.06267300	0.50915800
Н	-0.70093600	-0.97807500	0.80005300
Н	-1.34470200	0.53381600	1.41708400
C	-0.34943700	0.71113300	-0.47842800
Н	-0.85629200	1.63762600	-0.75663200
Н	-0.23231700	0.12394200	-1.39163700
С	1.02829300	1.03971900	0.07688300
H	1.55342100	1.77490900	-0.54276800
H	0.96523000	1.49536600	1.07095200
C	1.94785300	-0.14781900	0.17960900
H	2.9263/200	0.05180700	0.65832200
0 ~	1.69163900	-1.24586700	-0.23009100
C	-2.5829/400	-0.40589200	-0.07493200
H	-3.20003800	-0.94730500	0.64092800
H	-3.12121600	0.49/45/00	-0.36619900
H	-2.47525000	-1.02941000	-0.96311400
Core	Rigi	dRotor	
SymmetryFactor	1		
	40		
Frequencies [1/cm]	42	70 12 115 21	
81.40 110.18 130.07 2	45.08 201.40 2	/8.42 413.34	
1020 18 1077 62 1144	639.00 693.30	909.52 1005.29 42 04 1274 28	
1221 22 1224 05 1225 (.07 1134.71 12	5 18 112/4.30	
1452 11 1486 57 1498 54	5 1506 21 1512	50 1861 67	
2940 00 3040 09 3048 17	7 3058 45 3061	00 3071 87	
3092 92 3109 08 3128 71	1 3135 95	.00 30/1.0/	
ZeroEnergy[kcal/mol]	0		
FlectronicI evels[1/cm	1 1		
	'J I		
End			
Fragment	HO	2	
RRHO	1102	-	
Geometry[angstrom]		3	
H	-0.87923900	-0.86675500	0.00000000
0	0.05495200	-0.59862600	0.00000000
0	0.05495200	0.70697000	0.00000000
Core	Rigi	dRotor	

SymmetryFactor	1		
End	2		
1264.87 1469.59 3703.	3 12		
ZeroEnergy[kcal/mol]	0		
ElectronicLevels[1/cm]	1		
0 2			
End			
GroundEnergy[kcal/mol]	0		
Fnd	v		
IBarriers			
Barrier B1 R W1	# C1F	2	
RRHO	π CIL)	
Stoichiometry C5H110	3		
Core DhaseSpaceT	baam		
	neory	(
FragmentGeometry[ang	strom I	0 0 0 0 0 7 7 2 0 0	0 5001 5000
U U	-1.21829900	-0.0626/300	0.50915800
H	-0./0093600	-0.9/80/500	0.80005300
H	-1.344/0200	0.53381600	1.41/08400
C	-0.34943/00	0./1113300	-0.47842800
Н	-0.85629200	1.63762600	-0.75663200
Н	-0.23231700	0.12394200	-1.39163700
C	1.02829300	1.03971900	0.07688300
Н	1.55342100	1.77490900	-0.54276800
Н	0.96523000	1.49536600	1.07095200
С	1.94785300	-0.14781900	0.17960900
Н	2.92637200	0.05180700	0.65832200
Ο	1.69163900	-1.24586700	-0.23009100
С	-2.58297400	-0.40589200	-0.07493200
Н	-3.20003800	-0.94730500	0.64092800
Н	-3.12121600	0.49745700	-0.36619900
Н	-2.47525000	-1.02941000	-0.96311400
FragmentGeometry[ang	gstrom] 3		
Н	-0.87923900	-0.86675500	0.00000000
0	0.05495200	-0.59862600	0.00000000
0	0.05495200	0.70697000	0.00000000
SymmetryFactor		1	
PotentialPrefactor[au]	20.		
PotentialPowerExponer	nt 6.		
End			
Frequencies[1/cm]	45		
81.40 116.18 156.07 245	08 261 46 278	42,415,34	
666 43 706 73 758 01 8	859 00 895 50 9	09 32 1003 29	
1039 18 1077 63 1144	67 1154 71 124 [°]	3 94 1274 38	
1331 28 1334 95 1385 0	9 1404 84 1415	48 1426 67	
1452 11 1486 57 1400 55	1506 21 1512 5	30 1861 67	
20/0 00 20/0 00 20/9 17	3058 / 5 2061 0	0 3071 87	
2740.00 3040.07 3040.17	2125 05	0 30/1.0/	
3072.72 3107.00 3120.71 1264 97 1460 50 2702 14)))		
1204.0/ 1409.39 3/03.1	L		

ZeroEne	rgy[kcal/mol]	-6.0	67 1	
0	2	-	1	
End				
Barrier B2 V RRHO	W1 W2	# TS1B		
Geometr	v[angstrom]	19		
C	[mgsuom]	-2.42565100	-0.26246600	-0.32608100
H		-2.46248100	-0.18647700	-1.41588900
Н		-2.75651400	-1.27415100	-0.07674300
C		-0.98842100	-0.07413500	0.14584100
H		-0.94125900	-0.15406300	1.23319300
Н		-0.65156800	0.93521100	-0.10615300
C		-0.03837900	-1.08994800	-0.47160100
н		-0 34943900	-2 10773000	-0 20911400
Н		-0.05090200	-1 03742000	-1 56279100
C II		1 38182500	-0.95460000	-0.00482300
Ч		2 11830800	-0.55400000	-0.54080200
		1 65789400	-0.57071300	1 16887100
U Ц		2 08078300	0.58310000	0.00825200
		2.08978300	1 35581400	0.90825200
0		1 87038000	0.65181000	0.00743700
0 C		2 27484400	0.05181000	-0.91281700
		-3.3/404400	0.73021300	0.29298000
П		-4.39823100	0.61034200	-0.03013900
Н		-3.3/004000	0.07795700	1.380/9100
П Т11-		-3.0/521000	1.//22/200	0.0333/400
	1g 	EC:		
Imagi	naryFrequency	I/cm]	698.22	
WellL			4.99	
WellL	Depth[kcal/mol]		9.74	
End		р.		
Core		Rig	gidRotor	
Symm	netryFactor	1		
End				
Freque	ncies[1/cm]	50	(0.054.00.011.50	
63.84 67	.95 103.20 145.	01 171.72 243.	.68 274.39 311.53	
402.58 56	8.60 652.26 718	3.32 /34.05 /8	1.74795.55	
901.77 92	5.54 940.04 105	0.61 1057.07	1066.17 1089.55	
1144.70 1	188.62 1245.66	1286.69 1316.	.69 1333.94	
1375.40 1	385.61 1395.62	1414.96 1419.	.33 1464.29	
1493.92 15	02.58 1505.83 1	516.33 1667.8	34	
1949.48 30	35.62 3045.09 3	3049.97 3059.9	02	
3062.36 30	7/5.33 3088.35 3	3111.15 3128.6	8 3136.78	
ZeroEn	ergy[kcal/mol]	-1.6	68 ! B2-W1-W2	
Electron	icLevels[1/cm]	1		
0	2			
End				
End				
Input file for N	MESS for the b	imolecular re	eaction of HO ₂ +	C ₃ H ₇ CHO

! Global Section				
TemperatureList[K] 290. 298. 300. 310. 320. 330. 340). 350.	190. 200. 210. 22	20. 230. 240.	250. 260. 270. 280.
PressureList[bar]	0	.0316 0.1 0.178 (0.316 0.562 1	. 1.78 3.16 5.62 10.
31.6 50. 100. 1000.				
EnergyStepOverTemperature		.2		
ExcessEnergyOverTemperature		30		
ModelEnergyLimit[kcal/mol]		400		
CalculationMethod		direct		
WellCutoff		10		
ChemicalEigenvalueMax		.2		
ChemicalEigenvalueMin		1.e-11		
! Model Section				
Model				
EnergyRelaxation				
Exponential				
Factor[1/cm]		300		
Power		0		
ExponentCutoff		15		
End				
CollisionFrequency				
LennardJones				
Epsilons[1/cm]		82. 206.93		
Sigmas[angstrom]		3.74 4.28		
Masses[amu]		28. 105.06	5 ! N2 H	O2+C4H8O
L J				
End				
!Species				
Well W1 #C1C	CCSE	D (t)		
Species				
RRHO				
Geometry[angstrom]	16			
С	-1.98464200	0.27028700	-0.1405480	00
Н	-2.14086800	-0.14288900	-1.1379010	0
Н	-2.97120500	0.45273900	0.286718	00
С	-1.26986600	-0.76420900	0.7174110	00
Н	-0.99007200	-0.35701600	1.6943330	00
Н	-1.91065900	-1.62697700	0.9331960	00
C	-0.02160400	-1.32327800	0.1091360	00
Н	0.56838400	-1.99168800	0.759008	00
Ο	0.33940800	-1.11519000	-1.0270020	00
Н	1.79724400	-0.07057900	-0.8584860	00
О	2.33306500	0.54010900	-0.297860	00
О	1.78398400	0.49712400	0.878785	00
С	-1.21525700	1.58378200	-0.2391410	00
Н	-0.25828600	1.44265200	-0.7377250	00
Н	-1.78080700	2.32360300	-0.8036830	00
Н	-1.01717200	1.99432100	0.752000	00

Core	RigidRotor	•					
Symmetr	yFactor		1				
End							
Frequencies	s[1/cm]	42	2				
49.40 86.31 93.4	0 124.74 18	88.33 219.42 25	7.57 275.16				
292.20 372.86 556.43 662.35 713.53 798.23 862.95 954.40							
977.16 1064.	.55 1125.00	1154.30 1257.1	5 1299.30 1303.	85			
1374.61 139	6.64 1417.98	8 1429.17 1447.	.91 1490.58 1501	1.77			
1512.60 154	1.71 1815.84	4 2987.92 3041.	.02 3068.58 3071	1.11			
3080.31 311	1.91 3136.48	8 3157.43 3428.	.42				
ZeroEnergy	[kcal/mol]		-7.13				
End							
End							
Well W2	# M1C	CCSD(t)					
Species							
RRHO							
Geometry[a	ingstrom]	16					
C	ingstronij	-1 75435300	0 20776600	0 38015700			
н		-1 69735200	0.07826300	1 46351600			
Н		-1 84647100	1 28063900	0.20305600			
C II		-0.46460100	-0.30560600	-0.25057200			
Ч		-0.34184000	-1 37185800	-0.25057200			
H H		-0.34104000	-0.17888700	-0.03341400 -1.33881400			
II C		0.75630000	0.41106400	0.28007400			
Ч		0.75050500	0.3081100	1 35903300			
		0.80520800	1 7/853800	-0.02737200			
U Ц		0.81398900	1.88103000	-0.02737200			
		1 05300800	0.1081/1100	0.30301600			
0		2 16206400	1 28102000	-0.30391000			
0 C		2.10300400	-1.38102000	0.17324700			
U U		-2.97898000	-0.51857900	-0.10301300			
II Ц		-2.9143/300	-1.36949700	0.03102900			
II Ц		-3.89430700	-0.14634200	1 24171400			
II Corro	DigidDatar	-3.00322300	-0.38234000	-1.241/1400			
Cole	RigidKoloi		1				
Symmetr	yractor		1				
End	-[1/2000]	1'	h				
70 75 101 40	5[1/CIII]	4. 1 25 251 07 201	2 76 251 50				
/9./5 101.40 116.84 1/9.65 251.8/ 284./6 351.58							
357.23 490.57 505.55 570.92 752.54 874.99 918.04							
705.07 770.15 1072.30 1110.35 1128.30 1211.87 1243.02 1202 40 1212 27 1221 58 1261 77 1271 87 1406 24 1410 70							
1275.40 1512.27 1521.38 1501.77 1571.87 1400.24 1419.79 1727 1729 1500 18 1507 20 1517 27 2027 72 2050 07							
1454.57 1488.95 1500.18 1507.39 1516.24 3037.72 3059.94							
$3004.31\ 3092.31\ 3113.88\ 312/.31\ 3132.13\ 3141.3/\ 3803.39$							
ZeroEnergy	[kcal/mol]		-12.05				
		.					
Bimolecular		K #					
Fragment		C4H8	U .				
ккн()							

Geometry[angstrom]	13			
С	-1.01135400	0.40855500	-0.52911500	
Н	-1.73263600	1.19241500	-0.76296000	
Н	-0.69610300	-0.03078000	-1.47622100	
С	0.19963900	1.03687500	0.14582500	
Н	0.54240500	1.93256700	-0.38394700	
Н	-0.03479900	1.37509600	1.16093200	
С	1.39461800	0.12580300	0.23543700	
Н	2.25630000	0.52971600	0.80192500	
0	1.46293000	-0.95991900	-0.27029800	
С	-1.67006400	-0.65936300	0.33839400	
Н	-2.53510700	-1.09215500	-0.16190300	
Н	-0.97058000	-1.46464000	0.55707800	
H	-2.00994900	-0.23408300	1.28423400	
Core RigidRot	or	0.20100000	1.20.20.00	
SymmetryFactor	1			
End	-			
Frequencies[1/cm]	3	3		
119.01 167.44 205.62	289.00 368.10	661.64		
708 85 797 47 859 93 9	50 67 971 49 1	062.02		
1126 14 1154 07 1255 1	1 1298 82 137	1 42 1390 14		
1415 11 1426 12 1451 7	4 1490 63 150	5 21 1515 37		
1862 03 2939 23 3039 34	3062 94 3066	37 3078 37		
3110 86 3133 12 3149 35	; ;			
ZeroEnergy[kcal/mol]	0			
ElectronicLevels[1/cm	1 1			
0 2] 1			
End				
Fragment	НО)		
RRHO	1102	-		
Geometry[angstrom]		3		
H	-0 87923900	-0 86675500	0.00000000	
0	0.05495200	-0.59862600	0.00000000	
Ő	0.05495200	0.70697000	0.00000000	
Core BigidBotor	0.05475200	0.700970000	0.00000000	
SymmetryFactor	1			
End	1			
Frequencies[1/cm]	3			
1264 87 1469 59 3703	12			
ZeroEnergy[kca]/mol]	0			
Electronic evels[1/cm	1 1			
] 1			
End 2				
GroundEnergy[kcal/mol]	0			
Fnd	U			
IBarriers				
Barrier B1 P W/1	# C 1	C		
RRHO	# C]			
Stoichiometry C4H9O3	4			
	•			

Core	PhaseSpace	Theory						
Frag	gmentGeometry[a	ngstrom]	13					
С		-1.01135400	0.40855500	-0.52911500				
Н		-1.73263600	1.19241500	-0.76296000				
Н		-0.69610300	-0.03078000	-1.47622100				
С		0.19963900	1.03687500	0.14582500				
Н		0.54240500	1.93256700	-0.38394700				
Н		-0.03479900	1.37509600	1.16093200				
С		1.39461800	0.12580300	0.23543700				
Н		2.25630000	0.52971600	0.80192500				
0		1.46293000	-0.95991900	-0.27029800				
C		-1.67006400	-0.65936300	0.33839400				
H		-2.53510700	-1.09215500	-0.16190300				
H		-0.97058000	-1.46464000	0.55707800				
Н	~ 5	-2.00994900	-0.23408300	1.28423400				
Frag	gmentGeometry[ai	ngstrom	3	0.0000000				
H		-0.8/923900	-0.866/5500	0.0000000				
0		0.05495200	-0.59862600	0.00000000				
0		0.05495200	0.70697000	0.00000000				
Syn	imetryFactor	20	1					
Pote	intialPrefactor[au]	20.	-					
Pole	enualPowerExpon	ent c).					
Ella	maia[1/am]	26						
110	1101000 [1/0111]	280 00 368 10 6	561.64					
708 8	201 107.44 203.02	289.00 308.10 (250 67 971 /9 1()62 02					
/08.85 /9/.4/ 859.95 950.6/ 9/1.49 1062.02								
1/120	1126.14 1154.07 1255.11 1298.82 1371.42 1390.14							
1862 (12 2030 23 3030 3	4 3062 94 3066	37 3078 37					
3110.8	3 2)3).23 303).3 86 3133 12 3149 3	5 1264 87 1469	59 3703 12					
ZeroE	nergy[kcal/mol]	-7 13	s s s s s s s s s s s s s s s s s s s					
Electro	onicLevels[1/cm]	-7.12	,					
0	2	1						
End	-							
Barrier B2	W1 W2	#TS1C						
RRHO								
Geom	etry[angstrom]	16						
С	<i>J</i> L <i>O</i> J	-1.41617400	-0.23489900	-0.41734100				
Н		-1.30440600	0.22988700	-1.39671600				
Н		-0.88899100	-1.19013600	-0.46359500				
С		-0.75216300	0.64960300	0.62875000				
Н		-1.25248300	1.62399700	0.67268600				
Н		-0.83607900	0.21708600	1.62860700				
С		0.69536100	0.93478400	0.35247600				
Н		1.24274100	1.43836600	1.15805800				
Ο		1.13422700	1.03795800	-0.82987000				
Н		1.78251400	-0.03934300	-0.90003600				
Ο		2.06684300	-1.01104200	-0.33942700				
0		1.45342100	-0.77435900	0.74822300				

С -2.88932900 -0.46914200 -0.10649700 Η -3.35569500 -1.10301300 -0.85898200 Η -3.01342100 -0.95365200 0.86279000 Η -3.43626900 0.47427200 -0.07854600 Tunneling Eckart ImaginaryFrequency[1/cm] 699.59 WellDepth[kcal/mol] 5.44 WellDepth[kcal/mol] 10.36 End Core RigidRotor 1 SymmetryFactor End Frequencies [1/cm] 41 73.92 85.26 134.58 221.38 247.50 280.21 347.35 571.65 655.48 719.85 741.62 790.54 852.66 878.83 982.32 1040.00 1065.76 1069.77 1141.45 1188.11 1262.99 1317.16 1333.27 1384.12 1395.69 1411.53 1418.94 1464.35 1499.38 1506.88 1514.37 1667.75 1950.06 3035.43 3050.19 3059.98 3072.75 3087.73 3110.90 3132.24 3139.77 ZeroEnergy[kcal/mol] -1.69 ! B2-W1-W2 ElectronicLevels[1/cm] 1 0 2 End

End

References of the ESI

1 Long, B.; Bao, J. L.; Truhlar, D. G., Reaction of SO₂ with OH in the atmosphere. *Phys. Chem. Chem. Phys.* **2017**, *19*, 8091-8100.

2 Holbrook, K. A.; Pilling, M. J.; Robertson, S. H., *Unimolecular Reactions, 2nd Edition*. John Wiley & Sons: Chichester: 1996.

3 Georgievskii, Y.; Miller, J. A.; Burke, M. P.; Klippenstein, S. J., Reformulation and Solution of the Master Equation for Multiple-Well Chemical Reactions. *J. Phys. Chem. A* **2013**, *117*, 12146-12154.

4 Bao, J. L.; Truhlar, D. G., Effect of energy dependence of the density of states on pressuredependent rate constants. *Phys. Chem. Chem. Phys.* **2018**, *20*, 30475-30479.

5 Forst, W., The Theory of Unimolecular Reactions. Academic Press:New York 1973, p 190f.

6 Gilbert, R., G; Luther, K.; Troe, J., Theory of thermal unimolecular reactions in the fall-off range. II. Weak collision rate constants. *Phys. Chem.* **1983**, *87*, 169-177.

7 Klippenstein, S. J., RRKM Theory and Its Implementation. In Comprehensive Chemical Kinetics. **2003**, *39*, 55-103.

8 Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M., A fifth-order perturbation comparison of electron correlation theories. *Chem*. *Phys*. *Lett.* **1989**, *157*, 479-483.

9 Knizia, G.; Adler, T. B.; Werner, H.-J., Simplified CCSD(T)-F12 methods: Theory and benchmarks. J. Chem. Phys. 2009, 130, 054104.

10 Martin, J. M.; Kesharwani, M. K., Assessment of CCSD (T)-F12 approximations and basis sets for harmonic vibrational frequencies. *J. Chem .Theory. Comput.* **2014**, *10*, 2085-2090.

11 Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.

12 Peverati, R.; Truhlar, D. G., M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. *J. Phys. Chem. Lett.* **2012**, *3*, 117-124.

13 Yu, H. S.; He, X.; Truhlar, D. G., MN15-L: A new local exchange-correlation functional for Kohn–Sham density functional theory with broad accuracy for atoms, molecules, and solids. *J. Chem. Theory Comput.* **2016**, *12*, 1280-1293.

14 Czakó, G. b.; Szabó, I. n.; Telekes, H., On the choice of the ab initio level of theory for potential energy surface developments. *J. Phys. Chem. A* **2014**, *118*, 646-654.

15 Peterson, K. A.; Adler, T. B.; Werner, H.-J., Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar. *J. Chem. Phys.* **2008**, *128*.1007.

16 Lynch, B. J.; Zhao, Y.; Truhlar, D. G., Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory. J. Phys. Chem. A. **2003**, 107, 1384-1388.

17 Kuwata, K. T.; Hermes, M. R.; Carlson, M. J.; Zogg, C. K., Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide. *J. Phys. Chem. A* **2010**, *114*, 9192-9204.

18 Troe, J., Theory of thermal unimolecular reactions at low pressures. II. Strong collision rate constants. Applications. J. Chem. Phys. **1977**, *66*, 4758-4775.

19 Ben Akacha, N.; Guizani, O. E.; Gargouri, M., Improvement and modelling of hexenal transfer in liquid-gas reactor. *Applied Biochemistry and Biotechnology* **2007**, *143*, 276-283.

20 Brasseur, G. P.; Solomon, S., *Aeronomy of the middle atmosphere: Chemistry and physics of the stratosphere and mesosphere*. Springer Science & Business Media: 2006; Vol. 32.

21 Cabañas, B.; Martín, P.; Salgado, S.; Ballesteros, B.; Martínez, E., An Experimental Study on the Temperature Dependence for the Gas-Phase Reactions of NO₃ Radical with a Series of Aliphatic

Aldehydes. J. Atmos. Chem. 2001, 40, 23-39.