1	
2	Supporting information
3	
4	A universal and accurate LPMI-calculating-method for
5	mismatch in heterogeneous ice nucleation
6	Qiyuan Deng ^{1,2} , Hong Wang ^{1,2} , Xun Zhu ^{1,2} , Junjun Wu ^{1,2} , Yudong Ding ^{1,2} , Rong
7	Chen ^{1,2} , Qiang Liao ^{1,2} *
8	¹ Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry
9	of Education, Chongqing University, Chongqing 400030, China.
10	² Institute of Engineering Thermophysics, School of energy and power engineering,
11	Chongqing University, Chongqing 400030, China
12	*Corresponding author. Tel.: 0086-23-65102474; fax: 0086-23-65102474; e-mail:
13	<u>lqzx@cqu.edu.cn</u>
14	
15	 Supporting Tables S1-S3
16	 Supporting Figures S1-S
17	◆ Reference
18	
19	
20	

21 Experimental Section

	Table S1.	The defin	nitions of	the mi	smatch δ
--	-----------	-----------	------------	--------	-----------------

The δ measures the relative size of the lattice constants of the materials used compared to those of the substrate material. For heterogenous ice nucleation, δ denotes the difference in lattice constants of ice and substrate. For δ_1 and δ_2 , *a* is the lattice parameter. For δ_{2D} , *d* refers distances between two adjacent and congener atoms on the same plane for ice and substrate. For δ_d , *d* refers the interplanar spacing of the crystal panel. The subscripts s and i are substrate and ice, respectively.

- 29
- 30

Table S2. Unit cell parameters for crystal structures							
Crystal	Unit cell	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)
Ice ^{6, 7}	Hexagonal	4.506	4.506	7.346	90	90	120
a-Al ₂ O ₃ ⁸	Hexagonal	4.75	4.75	12.98	90	90	120
Silicon ⁹	Cubic	5.43	5.43	5.43	90	90	90
β -AgI 10	Hexagonal	4.6	4.6	7.51	90	90	120
PbI ₂ ¹¹	Hexagonal	4.56	4.56	13.97	90	90	120
Gibbsite ¹²	Monoclinic	8.69	5.08	9.74	90	90.54	90
Kaolinite ¹³	Triclinic	5.15	8.94	7.39	91.93	105.05	89.8
Mica ¹⁴	Monoclinic	5.19	9.03	20.11	90	95.782	90
Hematite ¹⁵	Hexagonal	5.03	5.03	13.75	90	90	120
Boehmite ¹⁶	Orthorhombic	2.85	12.12	3.74	90	90	90
AsI ⁵	Hexagonal	4.506	4.506	12.98	90	90	120
AsH ⁵	Hexagonal	5.03	5.03	13.75	90	90	120
HsI ⁵	Hexagonal	4.506	4.506	13.75	90	90	120

32 AsI, AaH, and HsI are imitated crystal structures. AsI refers to scaling α -Al₂O₃ to the

33 ice basal plane. As H refers to scaling α -Al₂O₃ to hematite in the basal plane. HsI refers

34 to scaling hematite to ice (HsI), reducing mismatch to zero for the basal plane

36	Table S3 the potential for water molecules and temperature					
-	Surface label	Potential for water molecules	T (K)	Water-substrate interaction	Ensembles	Number of molecules
-	β -AgI ^{5, 17}	TIP4P/Ice Six-site	230 240	CLAYFF	NPT	1350
	Kaolinite ^{5, 18}	TIP4P/Ice Six-site	240 230 240	CLAYFF	NPT	1450
	Mica ^{5, 19}	TIP4P/Ice	230	CLAYFF	NPT	6630
	PbI ₂ ⁵	TIP4P/Ice Six-site	230 240	CLAYFF	NPT	1350
	Gibbsite ^{5, 20}	TIP4P/Ice Six-site	230 240	CLAYFF	NPT	1000
	Hematite ^{5, 21}	TIP4P/Ice Six-site	230 240	CLAYFF	NPT	1600
	Boehmite ⁵	TIP4P/Ice	230	CLAYFF	NPT	1670
	AsI ⁵	TIP4P/Ice	230	LJ	NPT	1280
	AsH ⁵	TIP4P/Ice	230	LJ	NPT	1445
	HsI ⁵	TIP4P/Ice	230	LJ	NPT	1130

Table S4. The freezing delay time in MD simulation

Surface label	Kaolinite ¹⁸	KaonoSi ⁵	eta -AgI 17	PbI ₂ ⁵	α -Al ₂ O ₃ ⁸	AsI ⁵	AsI(Fe) ⁵	HsI ⁵	HsI(Fe) ⁵
Time (ns)	400	430	80	60	520	360	310	500	250

39 KaoniSi is produced by Kaolinite removing a layer of Si atoms. AsI,and HsI are

40 imitated crystal structures. Scaling α -Al₂O₃ to hematite (referred to as AsH) increases

41 the mismatch for the basal plane. Scaling hematite to ice (referred to as HsI) eliminates42 the mismatch on the basal plane. AsI(Fe) and HsI(Fe) are AsI and HsI using Fe LJ

43 forcefield for water-substrate interaction.

44

38

46 Materials and methods in experiment

The experiment system is shown in **Figure S1**. The semiconductor cooler (Ruipu China) is utilized to cool and maintain the substrate at a specific temperature. The plexiglass chamber on the cooler is used to maintain the relative humidity of the freezing environment. The temperature is measured by the thermocouples (Omega USA) and data logger (Agilent USA). The charge-coupled device (CCD) camera (Navitar USA) captures and records the freezing process at 25 fps (frames per second). The experimental steps are as follows.

54 55

Figure S1. Schematic diagram of the experimental system

56

 $10 \ \mu$ L droplets were pipetted onto the substrate by a pipette. Subsequently, N₂ was introduced through the gas inlet of the plexiglass cavity until the relative humidity inside the chamber was below 10%. The relative humidity in the chamber was measured by a hygrometer. Cool the substrate to the target temperature at a cooling rate of 2.8 $^{\circ}$ C/min. However, for individual droplets, freezing is a random event. Thus, more than freezing experiments were performed on the same substrate. Wherein the

monocrystalline silicon wafers (with Miller index of (100), (110) and (111)) and α -63 Al₂O₃ flakes (with Miller index of M-plane ($10\overline{1}0$), A-plane ($11\overline{2}0$) and C-plane 64 (0001)) were selected as heterogenous nucleation substrates. The thickness of silicon 65 wafer and α -Al₂O₃ flake are 500 μ m ±10 μ m and 430 μ m ±10 μ m, respectively (Suzhou 66 Research Materials Microtech Co., Ltd, China). The surfaces of the substrates were 67 prime polished. Before experiments, the surface properties should be characterized. The 68 wettability was observed on an optical contact-angle goniometer (Xuanyi, China). 69 Surface morphology was observed with a scanning electronic microscope (SEM, 70 HITACHI, Japan), and the roughness was measured using an atomic force microscope 71 (AFM, Asylum, USA). The contact angle of 5 µL water droplet was measured as shown 72 in Figure S2. Moreover, the SEM and AFM of the substrate surface morphology are 73 shown in Figure S2. The AFM measurement (Figure S3) indicates that Ra of the 74 substrates is located at 400-600 pm, which is an order of magnitude smaller than the 75 critical nucleation radius R_c (4-11 nm) at the experimental subcooling, namely $R_a < R_c$. 76 The interfacial correlation factor f(m,x) in the heterogenous nucleation can be treated as 77 $f(m,x) = (2-3m+m^3)/4^{-22,23}$. Therefore, interfacial correlation factor f is primarily 78 influenced by m. In summary, the effect of heterogeneous nucleation in our experiment 79 depends on the free energy differences between water and the crystal phase of the 80 substrate, namely, m in f, which is determined by the interaction strength and the 81 structure match²². The interaction strength between the same materials can be regarded 82 as identical. Different Miller indices result in different crystal plane structures in contact 83 with water. This study mainly compares the freezing delay times of droplets on silicon 84

85 wafers and α -Al₂O₃ flake with different Miller indices under different supercooling 86 degrees. All experiments were repeated 15 times to reduce random errors.

87

Figure S2. The contact angle, SEM and AFM of the substrates. (a) silicon wafer (100), (b) silicon wafer (110), (c) silicon wafer (111), (d) α -Al₂O₃ (A-plane), (e) α -Al₂O₃ (Mplane), (f) α -Al₂O₃ (C-plane). Figures in the first column show the contact angle of a 5

- 91 μ L droplet on the substrate. Figures in the second column show the SEM image of the
- 92 substrates. Figures in the third column show the AFM image of the substrates.

93

Figure S3. The surface roughness R_a of the substrates

Reference

97	1.	D. Turnbull and B. Vonnegut, Industrial & Engineering Chemistry, 1952, 44, 1292-
98	1298.	
99	2.	M. Fitzner, G. C. Sosso, S. J. Cox and A. Michaelides, Journal of the American
100	Chemical	Society, 2015, 137 , 13658-13669.
101	3.	Z. Liu, C. Li, E. C. Goonetilleke, Y. Cui and X. Huang, The Journal of Physical
102	Chemistry	<i>v C</i> , 2021, 125 , 18857-18865.
103	4.	M. Wendisch, Journal of Atmospheric Chemistry, 1999, 32, 420-422.
104	5.	A. Soni and G. N. Patey, The Journal of Physical Chemistry C, 2021, 125, 10723-
105	10737.	
106	6.	A. Goto, T. Hondoh and S. J. Mae, Journal of Chemical Physics, 1990, 93, 1412-
107	1417.	
108	7.	G. Malenkov, Journal of Physics-Condensed Matter, 2009, 21.
109	8.	E. N. Maslen, V. A. Streltsov, N. R. Streltsova, N. Ishizawa and Y. Satow, Acta
110	Crystallog	graphica Section B-Structural Science, 1993, 49, 973-980.
111	9.	P. Becker, P. Seyfried and H. Siegert, Zeitschrift Fur Physik B-Condensed Matter,
112	1982, 48 ,	17-21.
113	10.	R. J. Cava, F. Reidinger and B. J. Wuensch, Solid State Communications, 1977, 24,
114	411-416.	
115	11.	L. H. Brixner, H. Y. Chen and C. M. Foris, Journal of Solid State Chemistry, 1981,
116	40, 336-34	43.
117	12.	D. A. Ksenofontov and Y. K. Kabalov, Inorganic Materials, 2012, 48, 142-144.
118	13.	D. L. Bish, Clays and Clay Minerals, 1993, 41, 738-744.
119	14.	A. Soni and G. N. Patey, Journal of Physical Chemistry C, 2021, 125, 26927-26941.
120	15.	Y. El Mendili, J. F. Bardeau, N. Randrianantoandro, F. Grasset and J. M. Greneche,
121	Journal oj	f Physical Chemistry C, 2012, 116, 23785-23792.
122	16.	X. Bokhimi, J. A. Toledo-Antonio, M. L. Guzman-Castillo and F. Hernandez-
123	Beltran, J	ournal of Solid State Chemistry, 2001, 159, 32-40.
124	17.	A. Soni and G. N. Patey, The Journal of Physical Chemistry C, 2022, 126, 6716-
125	6723.	
126	18.	G. C. Sosso, T. Li, D. Donadio, G. A. Tribello and A. Michaelides, The Journal of
127	Physical (Chemistry Letters, 2016, 7, 2350-2355.
128	19.	A. Soni and G. N. Patey, The Journal of Physical Chemistry C, 2021, 125, 26927-
129	26941.	
130	20.	E. Chong, M. King, K. E. Marak and M. A. Freedman, The Journal of Physical
131	Chemistry	<i>A</i> , 2019, 123 , 2447-2456.
132	21.	N. Hiranuma, N. Hoffmann, A. Kiselev, A. Dreyer, K. Zhang, G. Kulkarni, T. Koop
133	and O. Ma	öhler, Atmos. Chem. Phys., 2014, 14, 2315-2324.
134	22.	Z. Zhang and XY. Liu, Chemical Society Reviews, 2018, 47, 7116-7139.
135	23.	Z. Huang, S. Kaur, M. Ahmed and R. Prasher, ACS Applied Materials & Interfaces,
136	2020, 12 ,	45525-45532.
137		