Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Profound Importance of Conventional O-H···O Hydrogen Bond versus Considerable Blue Shift of C_{sp2}-H bond in the Complexes of Substituted Carbonyls and Carboxyls

Nguyen Truong An,^{1,2} Vu Thi Ngan,¹ Nguyen Tien Trung*¹

¹⁾Laboratory of Computational Chemistry and Modelling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City, 590000, Vietnam.

²⁾ Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova

2155/3, 18223 Prague 8, Czech Republic.

Corresponding author: nguyentientrung@qnu.edu.vn

Table S1. Selected typically computational parameters at MP2/6-311++G(2d,2p), the DPE values of O-H and C_{sp2} -H bonds and PA at the O site of the C=O group in the isolated monomers at CCSD(T)/aug-cc-pVTZ//MP2/6-311++G(2d,2p) and some experimental results (in parentheses) taken from NIST webpage

results (in parenticess) area non rus r weepage									
Monomer	НСООН	FCOOH	CICOOH	BrCOOH	CH ₃ COOH				
r(O-H)/Å	0.9675	0.9645	0.9678	0.9689	0.9668				
r(C=O)/Å	1.2050	1.1908	1.1939	1.1934	1.2099				
σ*(O-H)/e	0.0309	0.0241	0.0296	0.0314	0.0295				
v(O-H) (cm ⁻¹)	3775.91	3828.55	3775.38	3757.87	3785.16				
PA(O) _{C=O}	743.1 (742)	701.1	727.9	735.3	788.3 (783.7)				
DPE(O-H)	1441.0 (1445.0)	1367.2	1293.3	1266.6	1456.5 (1457.0)				
Monomer	CH ₃ CH ₂ COOH	NH ₂ COOH	НСНО	CH ₃ CHO	NH ₂ CHO				
r(C/O-H)/Å	0.9668	0.963918	1.0988	1.1041	1.0986				
r(C=O)/Å	1.2105	1.2125	1.2131	1.2155	1.2178				
σ*(C/O-H)/e	0.0299	0.0255	0.0704	0.0814	0.08173				
$v(C/O-H) (cm^{-1})$	3784.9	3831.59	3009.51	2952.15	3021.26				
PA(O) _{C=O}	797.8 (797.2)	816.0	712.0 (711.5)	771.3 (768.5)	832.6 (822.2)				
DPE(O/C _{sp2} -H)	1454.0 (1454.0)	1453.9	1650.2 (1650.7)	1642.0 (1645.1)	1628.7 (1505.0)				

PA: Proton Affinity, DPE: Deprotonation Enthalpy; energy given in kJ.mol⁻¹

			a ()	$\nabla 2$					
Complex	Contacts	К(П U) (Å)	$\rho(\mathbf{r})$	$v^{2}\rho(\mathbf{r})$	$\Pi(\mathbf{r})$	E _{HB}			
	С1-Ш2Об	<u>(A)</u>	(au)	(au)	0.0011				
H-H	$01^{-}\Pi^{2}$ 00	2.3/ 1.79	0.0122	0.041	0.0011	-10.5			
	07-H8	1./ð	0.0362	0.100	-0.0022	-40.3			
H-F	C1-H2···O6	2.41	0.0110	0.038	0.0011	-9.6			
H-Cl	O7–H8…O3	1.72	0.0415	0.118	-0.0037	-48.5			
	C1-H2O6	2.41	0.0111	0.038	0.0011	-9.6			
H-Cl	O7-H8O3	1 70	0.0415	0.117	0.0020	10 0			
	C1_H2Of	1./2 2.41	0.0413	0.110	-0.0038 0.0011	-48.2			
H-Br	07_U202	∠.41 1 72	0.0111	0.038	0.0011	-7.0 _18 6			
H-CH ₃		1.12	0.0418	0.110	-0.0040	-40.0 11 1			
H-CH ₃	07 - 119 - 02	2.54	0.0128	0.043	0.0012	-11.1			
H-C ₂ H ₅	0/-10.003	1.80	0.034/	0.100	-0.0018	-38.0			
H-C ₂ H ₅	0.1 - 112 - 0.000	2.34 1.90	0.0128	0.044	0.0012	-11.2			
-	0/-10.003	1.80	0.0345	0.102	-0.0018	-38.4			
H-NH ₂	07 - 12 - 00	2.31 1.79	0.0150	0.04/	0.0014	-11.9			
	07-11803	1./ð	0.035/	0.100	-0.0021	-40.1			
Table S2. Continued									
Complex	Contacta	R(H…O)	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	H(r)	E _{HB}			
Complex		(Å)	(au)	(au)	(au)	(kJ.mol ⁻¹)			
СП П	C1-H2O6	2.37	0.0122	0.041	0.0011	-10.5			
СН3-Н	O7–H8…O3	1.74	0.0395	0.112	-00032	-45.2			
СН. Б	С1-Н2…Об	2.41	0.0110	0.038	0.0011	-9.6			
CH ₃ -F	O7–H8…O3	1.68	0.0457	0.124	-0.0053	-54.6			
CHACI	C1-H2O6	2.40	0.0112	0.038	0.0011	-9.7			
CH ₃ -Cl	O7–H8…O3	1.68	0.0458	0.122	-0.0055	-54.5			
CH ₂ -Rr	С1-Н2…Об	2.40	0.0112	0.038	0.0011	-9.7			
CH ₃ -Br	07-Н8…ОЗ	1.68	0.0463	0.122	-0.0057	-55.2			
СН»-СН-	С1-Н2…Об	2.35	0.0128	0.043	0.0012	-11.1			
C113 C113	07-Н8…ОЗ	1.76	0.0378	0.109	-0.0027	-42.8			
CH2-C2H	C1–H2…O6	2.34	0.0129	0.043	0.0012	-11.1			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	O7–H8…O3	1.76	0.0376	0.108	-0.0027	-42.6			
CH2-NH2	C1-H2···O6	2.31	0.0136	0.047	0.0013	-11.9			
	<u>07–H8…O3</u>	1.75	0.0387	0.111	-0.0030	-44.3			
NH2-H	C1-H2···O6	2.32	0.0132	0.046	0.0013	-11.5			
	07–H8···O3	1.69	0.0452	0.123	-0.0052	-53.8			
NH2-F	C1-H2···O6	2.36	0.0121	0.043	0.0014	-10.6			
2 =	07–H8…O3	1.62	0.0528	0.135	-0.0082	-65.9			
NH2-Cl	C1-H2···O6	2.36	0.0121	0.043	0.0014	-10.6			
	07–H8····O3	1.62	0.0533	0.133	-0.0087	-66.5			
NH ₂ -Br	C1-H2···O6	2.36	0.0121	0.043	0.0013	-10.5			
-	07–H8…O3	1.61	0.0541	0.133	-0.0091	-67.5			
NH ₂ -CH ₂	C1-H2···O6	2.30	0.0138	0.048	0.0014	-12.1			
23	07–H8····O3	1.71	0.0431	0.119	-0.0045	-50.8			
NH2-C2H5	C1-H2···O6	2.30	0.0139	0.048	0.0014	-12.2			
2 = 2-+3	07–H8····O3	1.71	0.0429	0.118	-0.0044	-50.5			
NH ₂ -NH ₂	07 H2 06	2.26	0.0147	0.052	0.0016	-13.03			
	07–H8…O3	1.70	0.0441	0.121	-0.0048	-52.4			

Table S2. The intermolecular distances R(H···O), selected parameters at the BCPs of H···O contacts and individual hydrogen bond energies (E_{HB}) at MP2/6-311++G(2d,2p)

Table S5. WBI of the examined complexes calculated at $\omega B9/A-D/6-511++O(2d,2p)$										
Complex	H-H	H-F	H-Cl	H-Br	H-CH ₃	H-C ₂ H ₅	H-NH ₂			
WBI(O…H) /O-H…O	0.0573	0.0706	0.0709	0.0715	0.0535	0.053	0.0558			
$WBI(H \cdots O) / C_{sp2}-H \cdots O$	0.0054	0.0039	0.0041	0.0041	0.0057	0.0057	0.0063			
Complex	СН3-Н	CH ₃ -F	CH ₃ -Cl	CH ₃ -Br	CH ₃ -CH ₃	CH ₃ -C ₂ H ₅	CH ₃₋ NH ₂			
WBI(O…H) /O-H…O	0.0659	0.082	0.0832	0.0842	0.0614	0.0609	0.0639			
$WBI(H \cdots O) / C_{sp2}-H \cdots O$	0.0056	0.0041	0.0043	0.0043	0.0059	0.0059	0.0064			
Complex	NH ₂ -H	NH ₂ -F	NH ₂ -Cl	NH ₂ -Br	NH ₂ -CH ₃	NH ₂ -C ₂ H ₅	NH ₂₋ NH ₂			
WBI(O…H) /O-H…O	0.0806	0.1005	0.1028	0.1046	0.0751	0.0745	0.0779			
$WBI(H \cdots O) / C_{sp2} - H \cdots O$	0.0067	0.0049	0.005	0.005	0.0069	0.0069	0.0076			

Table S3. WBI of the examined complexes calculated at ωB97X-D/6-311++G(2d,2p)

Table S4: Comparision of the interaction energies (in kJ.mol⁻¹) corrected by both ZPE and BSSE using different levels of theory, including two double hybrid functionals, CCSD(T) and CBS extrapolation.

		0( <b>-</b> <i>w</i> , <b>-</b> <i>P</i> )		aug-cc	:-pv1Z	CDC	
DSD-P	BEP86	<b>B2GP-PLYP+D2</b> Grimme's dispersion		CCSD(T)		CBS	
$\Delta E^*$	BSSE	$\Delta E^*$	BSSE	$\Delta E^*$	BSSE	$\Delta E^*$	
-32.5	3.9	-34.7	3.4	-31.3	3.5	-36.9	
-38.2	4.4	-40.4	3.8	-36.2	3.8	-41.8	
-47.1	4.7	-49.5	4.1	-44.2	4.3	-49.9	
_	<b>DSD-F</b> ΔE* -32.5 -38.2 -47.1	DSD-PBEP86   ΔE* BSSE   -32.5 3.9   -38.2 4.4   -47.1 4.7	DSD-PBEP86 B2GP-F Grimme's   ΔE* BSSE   -32.5 3.9   -38.2 4.4   -47.1 4.7	DSD-PBEP86 B2GP-PLYP+D2 Grimme's dispersion   ΔE* BSSE ΔE* BSSE   -32.5 3.9 -34.7 3.4   -38.2 4.4 -40.4 3.8   -47.1 4.7 -49.5 4.1	DSD-PBEP86 B2GP-PLYP+D2 Grimme's dispersion CCS   ΔE* BSSE ΔE* BSSE ΔE*   -32.5 3.9 -34.7 3.4 -31.3   -38.2 4.4 -40.4 3.8 -36.2   -47.1 4.7 -49.5 4.1 -44.2	DSD-PBEP86 B2GP-PLYP+D2 Grimme's dispersion CCSD(T) $\Delta E^*$ BSSE $\Delta E^*$ BSSE $\Delta E^*$ BSSE   -32.5 3.9 -34.7 3.4 -31.3 3.5   -38.2 4.4 -40.4 3.8 -36.2 3.8   -47.1 4.7 -49.5 4.1 -44.2 4.3	

Table S5a. The parameters of the CBS exponential extrapolation in the form of  $E^{HF}(X) = E^{HF}_{CBS} + B.exp(-\alpha X)$ , for the Hartree-Fock total energies of the structures involved in the **H-H**, **CH₃-H** and **NH₂-H** compelexes, where  $E^{HF}(X)$  is the total energy at HF/aug-ccpVXZ (X=2 for DZ, X=3 for TZ and X=4 for QZ) corrected by the both ZPE and BSSE computed at the corresponding level and  $E^{HF}_{CBS}$  is the HF total energy at the CBS limit.

Constant	Democratic	Structures involved in the complex						
Complex	Parameter	Aldehyde	НСООН	Complex				
	α	1.35		1.30				
n-n	В	1547.4		3747.2				
СН3-Н	α	1.37	1.32	1.32				
	В	2126.8	2418.2	4303.5				
NH ₂ -H	α	1.33	-	1.30				
	В	2157.9		4340.9				

Table S5b. The extrapolated HF total energies  $E_{CBS}^{HF}$ , CCSD(T) correlation energies  $E_{CBS}^{corr}$  and the CCSD(T) total energies extrapolated at the CBS limit  $E_{CBS}^{CCSD(T)}$  for the structures involved in the **H-H**, **CH₃-H** and **NH₂-H** compelexes, where  $E_{CBS}^{CCSD(T)} = E_{CBS}^{HF} + E_{CBS}^{corr}$ . All energetical values are in kJ.mol⁻¹.

## Structures involved in the complex

Complex	Aldehyde			НСООН			Complex			
	E ^{HF} _{CBS}	E ^{corr} _{CBS}	$E^{CCSD(T)}_{CBS}$	E ^{HF} _{CBS}	$E_{CBS}^{corr}$	$E^{CCSD(T)}_{CBS}$	E ^{HF} _{CBS}	$E_{CBS}^{corr}$	$E^{CCSD(T)}_{CBS}$	
Н-Н	-299036.3	-1209.3	-300245.6				-794826.2	-3125.3	-797951.5	
СН ₃ -Н	-401524.1	-1746.4	-403270.5	-495766.3	-1902.7	-497669.0	-897317.9	-3663.5	-900981.4	
NH ₂ -H	-443638.8	-1835.7	-445474.5				-939439.6	-3753.8	-943193.4	

*The correlation energy at CCSD(T)/aug-cc-pVXZ is fitted with the expression of the power form:* 

$$E^{corr}(X) = E^{corr}_{CBS} + A X^{-3}$$

Therefore, using the two-point fitting scheme for X = 2 and X = 3 and eliminating the fitting parameter A, the CCSD(T) correlation energy at the CBS limit can be obtained by the expression:

$$E_{CBS}^{corr} = \frac{E^{corr}(DZ). 2^3 - E^{corr}(TZ).3^3}{2^3 - 3^3}$$

in which, the CCSD(T) correlation energies are obtained using the two basis sets aug-cc-pVDZ and aug-cc-pVTZ on the MP2/6-311++G(2d,2p) geometries:

$$E^{corr}(DZ) = E^{CCSD(T)}(DZ) - E^{HF}(DZ); E^{corr}(TZ) = E^{CCSD(T)}(TZ) - E^{HF}(TZ)$$

Table S6. Contributions of different components in the overall interaction energy calculated by using SAPT2+ approach, ( $\Delta E_{SAPT2+}$ , kJ.mol⁻¹) with the aug-cc-pVDZ basis set

Complex	Eelst	Eind	Edisp	$\delta E_{int,r}^{HF}$	Eexch	$\Delta E_{SAPT2^+}$
Н-Н	-65.3(47.7)	-39.0(28.5)	-21.8(15.9)	-10.9(7.9)	86.5	-50.5
H-F	-71.2(47.4)	-44.2(29.4)	-22.2(14.8)	-12.7(8.4)	93.3	-57.0
H-Cl	-70.8(46.6)	-44.9(29.6)	-23.0(15.1)	-13.2(8.7)	95.9	-55.9
H-Br	-71.1(46.2)	-45.8(29.8)	-23.4(15.2)	-13.5(8.8)	97.9	-55.9
H-CH ₃	-63.6(47.8)	-37.2(27.9)	-22.1(16.6)	-10.2(7.7)	84.1	-49.0
H-C ₂ H ₅	-63.3(47.6)	-37.1(27.9)	-22.3(16.8)	-10.2(7.7)	84.1	-48.7
H-NH ₂	-66.5(48.0)	-38.6(27.9)	-22.6(16.4)	-10.6(7.7)	87.1	-51.3
СН3-Н	-71.8(47.1)	-44.1(28.9)	-23.9(15.7)	-12.6(8.3)	96.6	-55.7
CH ₃ -F	-79.7(46.9)	-50.9(29.9)	-24.4(14.4)	-14.9(8.8)	105.8	-64.1
CH ₃ -Cl	-79.5(46.1)	-51.9(30.1)	-25.4(14.8)	-15.6(9.0)	109.3	-63.2
CH ₃ -Br	-80.1(45.7)	-53.1(30.3)	-25.9(14.8)	-16.1(9.2)	111.9	-63.4
CH ₃ -CH ₃	-69.3(47.2)	-41.8(28.4)	-24.1(16.4)	-11.7(8.0)	93.5	-53.6

CH ₃ -C ₂ H ₅	-69.0(47.0)	-41.7(28.4)	-24.3(16.6)	-11.7(8.0)	93.4	-53.3	
CH ₃ -NH ₂	-72.0(47.4)	-43.2(28.4)	-24.6(16.2)	-12.1(8.0)	96.2	-55.7	
NH ₂ -H	-87.8(47.2)	-55.0(29.6)	-27.1(14.5)	-16.2(8.7)	118.8	-67.3	
NH ₂ -F	-98.3(46.9)	-63.8(30.5)	-27.9(13.3)	-19.4(9.3)	131.1	-78.3	
NH ₂ -Cl	-98.5(46.0)	-65.8(30.8)	-29.2(13.6)	-20.5(9.6)	136.4	-77.6	
NH ₂ -Br	-99.4(45.5)	-67.6(31.0)	-29.8(13.6)	-21.3(9.9)	140.1	-78.0	
NH ₂ -CH ₃	-84.4(47.3)	-52.0(29.1)	-27.2(15.2)	-15.0(8.4)	114.3	-64.3	
NH ₂ -C ₂ H ₅	-83.9(47.1)	-51.9(29.1)	-27.4(15.4)	-15.0(8.4)	114.3	-64.0	
NH ₂ -NH ₂	-87.3(47.5)	-53.4(29.1)	-27.7(15.0)	-15.4(8.4)	117.2	-66.7	

Values in parentheses are the percentages (%) of the corresponding energy components contributing to interaction energy of the complexes



Figure S1. The high correlations between individual hydrogen-bonded energies ( $E_{HB}$ , kJ.mol⁻¹) and the intermolecular distances (R(H···Z), Å) and electron density ( $\rho$ (r), au)





Figure S2a. NCI isosurface and plots of s(r) as a function of sign( $\lambda_2$ ). $\rho$ (r) for all complexes (The surfaces are colored on a blue-green-red scale according to the values of sign( $\lambda_2$ ). $\rho$ (r) ranging from -0.04 to 0.04 au)







Figure S3. Relationships of the interaction energies ( $\Delta E^*$  and  $\Delta E_{SAPT2+}$ ) and the substituent Y for the investigated complexes



Figure S4. MEP on the surface of monomers plotted at MP2/6-311++G(2d,2p) (isovalue = 0.0004 au) with the values of the maximum surface electrostatic potential (V_{s,max}) at H atom of OH group in YCOOH and the minimum surface electrostatic potential (V_{s,min}) at O atom of C=O group in XCHO



Figure S5. Contributions of different energetic components into interaction energy of the complexes



Figure S6. The linear correlations of the changes of the C_{sp2}-H and O-H stretching vibrational frequencies versus the changes of their corresponding bond lengths



Figure S7. The linear correlation between the interaction energy of complexes and intermolecular hyperconjugation energy of the charge-transfer interaction derived from n(O3) lone pair to  $\sigma^*(O7-H8)$  orbital



Figure S8. The linear correlation between changes of  $C_{sp2}$ -H stretching frequency  $\Delta v(C_{sp2}$ -H) versus  $\Delta \sigma^*(C_{sp2}$ -H) and  $\Delta \sigma^*(O$ -H) values