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1. Lithiation of FePO4 and Delithiation of LiFePO4 
 
The details of the process of phase transformation between FePO4 (lithium-free) and LiFePO4 
(fully lithiated) have been the subject of a long debate. Initially, the “shrinking core” model was 
proposed by Padhi, Goodenough and co-workers,1 with a radius-dependent conversion of 
LiFePO4 to FePO4 during delithiation. It was proposed that during delithiation, the surface area 
(and radius) of the FePO4/LiFePO4 interface shrinks through each particle while the lithiated 
core is converted to the delithiated phase.  
 
Since the inception of the “shrinking core” model, other groups have continued their research 
into lithium insertion and have ultimately concluded that this model was incomplete. A mosaic 
variant was introduced by Andersson et al.,2 who proposed that lithium atoms can intercalate into 
FePO4 at many specific sites in the particle, not just at the interface of a growing core with the 
lithium-free shell. This leaves small regions of LiFePO4 or FePO4 during deintercalation and 
intercalation, respectively. Other groups also proposed new models of insertion, such as the 
domino-cascade and the spinodal-decomposition models.3, 4 Several publications5-7 have 
emphasized the anisotropic nature of intercalation and deintercalation, which is incompatible 
with the isotropic mechanism proposed by Padhi et al.1 This was noted early on by Ceder and 
coworkers,8 who found a very high ionic conductivity in the b-direction, while ionic conductivity 
was nearly unnoticeable in other directions.8 This gives evidence to the fact that intercalation 
occurs through tunnels or channels along the b-direction of the FePO4 lattice, which was later 
confirmed by Laffont and co-workers7 using high resolution electron energy loss spectroscopy 
(HREELS). In the model developed by Laffont et al.,7 there are distinct lithium-free and lithiated 
regions, with a sharp phase boundary between the two. Upon intercalation, lithium is inserted 
into the channels along the b-direction of the crystal structure and parallel to the phase boundary, 
which moves perpendicular to the direction of insertion (see Figure S1).  
 
To understand how this process occurs, one must consider the interfacial region7, where the 
lithiated and lithium-free phases co-exist along the phase boundary. Between the two phases, 
there is a lattice mismatch due to the differences in the FeIIIPO4 and LiFeIIPO4 crystal structures 
around the transition metal in its different oxidation states. This mismatch locally strains the 
crystal structure, which is thought to facilitate the lithiation and delithiation processes at the 
interface.6  When lithium deintercalates along the b-direction, a lithium ion and an electron 
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coming from Fe2+ (which transitions to Fe3+) very quickly diffuse out of the cathode,6 resulting 
in the formation of the next layer of the lithium-free FePO4 region and a displacement of the 
phase boundary along the a-direction.5, 6 Where the FePO4 crystal structure has adopted its 
undistorted bulk form, it is difficult for the lithium ion and the electron to reenter the cathode.6 
The experimental data clearly show that in the absence of a phase boundary, lithium ions and 
electrons are not able to diffuse back into nearly empty channels of FePO4. Similarly, during 
delithiation, lithium is unable to leave a full channel of LiFePO4 except at the phase boundary.  
 
For the intercalation and deintercalation processes, the domino-cascade model of Delmas et al.6 
proposes that, once nucleated, the phase boundary moves along the a-direction in a “wave-like” 
manner, requiring little energy to proceed.6 The insertion process may be more nuanced, see 
Figures S1(a): lithium fills empty channels of FePO4 near the phase boundary with LiFePO4 
starting from the particle edge in contact with the lithium-rich electrolyte.7 The phase boundary 
may be sharp7 or an interfacial solid solution zone (SSZ) of up to 20 nm thickness.9 A model that 
accounts for all observations of intercalation and deintercalation should explain the required high 
electronic conductivity to and at the phase boundary.  

 
Figure S1. (a) Lithiation process as deduced from HREELS,7 at the phase boundary between two 
distinct phases, LiFePO4 and FePO4. Lithium is inserted into channels or tunnels of FePO4 along 
the b-direction (horizontal, indicated by black arrows), and the lithiated phase grows 
perpendicular to this local direction of insertion (vertical in the figure). Lithium ions are 
indicated as green spheres. (b) The delithiation process according to HREELS.7 Lithium leaves 
the channels in the b-direction and the phase boundary moves along the red arrow perpendicular 
to this local direction of deintercalation. Lithium ions are indicated as green spheres. 
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2. Equations for Electrical-Energy Release by an Electrochemical Cell 
 
Quantifying the electrical energy released by a discharging electrochemical cell such as a LIB is 
a goal of chemical thermodynamics. It is widely accepted that at constant T and P, the electrical 
energy released by an electrochemical cell, also known as electrical work, is equal to the free-
energy change in the electrochemical reaction, 
 

wele = DG          (S1) 
 
Strictly speaking, however, this equality applies only for a reversible electrochemical cell; for an 
irreversibly discharging cell, the second law leads to DG < wele. Here we show how a useful 
approximate alternative to eq.(S1) for a slowly but irreversibly discharging cell can be derived. 

A reversible cell is problematic because it is more contrived than is widely recognized: it 
must have an applied voltage, from an attached external voltage source, to ensure reversibility 
between discharging and charging by an infinitesimal change in the applied voltage. We would 
like to instead describe an electrochemical cell without attached external voltage source 
discharging slowly through a large resistance in the external circuit, but this is an irreversible 
process and therefore more difficult to analyze. 

We can make progress towards an analysis of an irreversibly discharging cell by a first-
law analysis of the internal-energy change DU of a general electrochemical cell, at constant 
pressure P = Pext and variable volume V, due to work w and heat q exchanged with the 
surroundings, which gives us 
 

DU = q + w = q – P DV + wele       (S2) 
 
Using this equality and the definition H = U + PV, still at constant pressure, we obtain 
 

DrH = DH = DU + D(PV) = DU + P DV       
       = q – P DV + wele + P DV = q + wele     (S3) 

 
to be solved for 
 

wele = DrH - q    (any cell at constant P)   (S4) 
 
This general and useful result, derived without assuming reversibility, tells us that we can obtain 
the electrical-energy release as DrH, which is mostly the change in bond energies, corrected for 
heat loss (usually; rarely heat gain). It shows that dissipative heat loss by the cell, discussed in 
more detail below, reduces the magnitude of the electrical energy released, in accordance with 
expectations based on the principle of conservation of energy.  

We first apply eq.(S4) to a reversible process at constant T (and still P), where the 
equality of Clausius applies, 
 
 DrS = qrev/T      (reversible cell at constant T)   (S5) 
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recovering the well-known eq.(S1) 
 
 wele = DrH - T DrS = DrG    (reversible cell at constant T and P)  (S6) 

 
Next we consider a cell irreversibly discharging with a small current I through a large 

resistance in the external circuit, at constant T and P. A small ionic current of the same 
magnitude I flows through the small internal resistance Rcell of the cell for a period of time Dt, 
and dissipates a small amount of ‘Ohmic’ heat according to 
 

qdiss = - Rcell I2 Dt < 0        (S7) 
 
Since the temperature of the cell is constant, this energy is given off (hence its negative sign) as 
heat to the constant-temperature (heat-bath) surroundings. Next we assume that this small heat 
dissipation does not significantly alter the heat given off or taken up by the chemical reaction in 
the reversible case, so we can add the two types of heat, 
 
 q ≈ qrev + qdiss = T DrS + qdiss       (S8) 
 
This immediately leads to 
 

wele ≈ DrH – (T DrS + qdiss) = DrG – qdiss      (S9) 
 
an eminently reasonable result: The energy lost through dissipative resistive heating in the cell 
directly reduces the magnitude of the electrical-energy release into the external circuit. It is 
commonly assumed that qdiss can be neglected relative to DrG. With Rcell = 10-2 W, I = 0.1 Amp, 
and Dt = 106 s in eq.(S7), indeed qdiss = - 0.1 kJ is small in magnitude compared to DrG ≈ - 300 
kJ. All three quantities in eq.(S9) are negative, and we can also write 
 

|wele| ≈ |DrG| – |qdiss|        (S10) 
 
The second-law requirement DG < wele is fulfilled because (– qdiss) > 0 in eq.(S9) makes wele less 
negative than DG.  
  



 6 

3. Electrode Terminology 
 
Negative/positive electrode vs. anode/cathode. Two terminologies for electrodes are common 
in electrochemistry: negative/positive electrode and anode/cathode. There is universal agreement 
that the anode is the electrode where oxidation (loss of electrons) occurs. In a discharging 
battery, this is the negative electrode since it releases negatively charged electrons into the 
external circuit. The cathode is the electrode where reduction (gain of electrons) happens and it is 
the positive electrode in a working battery. We prefer “negative electrode” for several reasons 
(for instance, it can be understood without memorization of a definition that in turn requires an 
understanding of oxidation) and use it in the initial, conceptual sections of our paper.  

The negative electrode remains negative whether the battery is discharging or charging, 
in the first case because the electrochemical reaction releases excess electrons at this electrode, 
see Figure S2a, and in the second case because the external voltage source pushes excess 
electrons into this electrode, see Figure S2b. By contrast, because the electrochemical reaction is 
reversed from the discharging to the charging condition, the anode in a discharging battery 
becomes the cathode upon switch to the charging state (while remaining the negative electrode). 

Unfortunately, “negative electrode” has the serious drawback of being too long in 
technical analyses: for instance, “negative electrode” does not work well as a subscript, while 
“anode” or some shortened form of it is convenient. Furthermore, the battery literature refers 
almost exclusively to anode and cathode. For these reasons, we switch to anode and cathode in 
the later, technical sections of this paper. 
 

 
 
Figure S2. Cartoons of a lithium-ion battery, with an emphasis on electron flow and electrode 
polarity, (a) while discharging and (b) while being charged by an external voltage source. In a), 
electron flow is driven by the spontaneous electrochemical reaction, in b) by the external voltage 
source which acts like an electron pump, pushing electrons into the negative and pulling them 
out of the positive electrode. In both cases, the left electrode has an electron excess and is 
therefore negative.  
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4. Calculation of Molar Enthalpies and Gibbs Free Energies 

 
Calculating the energy released in a lithium iron phosphate battery. Using thermodynamic 
data presented by Phan et al.,10 taken from an earlier source,11 we obtain the enthalpy and free 
energy of reaction as well as the cell voltage of a lithium-ion battery with a lithium-metal anode 
and iron-phosphate cathode: 
 

Li(s)  +   FeIIIPO4   ®   LiFeIIPO4      (S11a) 

DfHoi  0       +   -1279   -1616   kJ/mol DrHo = -337 kJ/mol  (S11b) 

Soi  29.1     122      131 J/mol K DrSo = -20 J/mol K  (S11c) 

                               DrGo  = DrHo – 298 K DrSo = -331 kJ/mol    (S11d) 

      Ecello = -DrGo/F = 3.43 V     (S1e) 

 
Calculating cohesive energies from enthalpies of formation. As shown in the supporting 
information of reference,12 the cohesive (free) energy of a compound i with the elemental 

composition CcHhOoNnSsPpLiliFefeMnmnCoco relative to the unbonded, free atoms at the same 
temperature can be calculated from the enthalpy or free energy of formation according to: 
 

 Hoi = DfHoi –  

(716.7 c + 218.0 h + 249.2 o + 472.7 n  
+ 278.8 s + 314.64 p + 159.4 li + 416.3 fe 
+ 281.0 mn + 425.0 co) kJ/mol   (S12) 
 

The coefficients are the bond energies per atom in the elements in their standard states, e.g. 436 
kJ/mol/2 for hydrogen or -498.4 kJ/mol/2 for oxygen. Similarly, 
 

Goi = DfGoi –  

(671.3 c + 203.3 h + 231.8 o + 455.6 n  
+ 238.3 s + 278.3 p + 126.7 li + 370.7 fe 
+ 173.6 mn + 380.3 co) kJ/mol  (S13) 
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Technically, the molar energies multiplying the elemental coefficients are the standard enthalpies 
(or free energies) of formation of the gaseous (unbonded) atoms13 (from the elements in their 
standard state). For example, this yields the cohesive energies of iron phosphate and lithium iron 
phosphate: 
 

HoFePO4 = -1279 kJ/mol – 

 (249.2 × 4 + 314.64  + 416.3) kJ/mol = -3007 kJ/mol   (S14) 
 
 HoLiFePO4 = -1616 kJ/mol –  

(249.2 × 4 + 314.64 + 159.4 + 416.3) kJ/mol = -3503 kJ/mol  (S15) 

 
The cohesive energy Hoi, molar entropy Soi, and cohesive free energy Goi of a compound 
LiliFefePpOo are related as follows: 
 

Goi = Hoi – 298 K (Soi - (160.95 o + 163.08 p + 180.38 fe + 138.66 li) J/molK)  (S16) 
 
Here, the molar entropies before the elemental coefficients are the molar entropies of the gaseous 
atoms.13 We can thus obtain the cohesive free energies of iron phosphate and lithium iron 
phosphate: 
 

GoFePO4 = -3007 kJ/mol – 298 J/mol  

(122.21 – 160.95 × 4 - 163.08 - 180.38) = -2749.2 kJ/mol   (S17) 
 

GoLiFePO4 = -3503 kJ/mol – 298 J/mol  

(130.95 – 160.95 × 4 - 163.08 – 180.38 – 138.66) = -3206.5 kJ/mol  (S18) 
 
Cohesive energies of CoO2 and LiCoO2 were calculated from the equations given above based 
on the enthalpies of formation reported as 
 

DfHoCoO2 = -290 kJ/mol14  

DfHoLiCoO2 = -679±3 kJ/mol8, 14-16 
 
This yields the cohesive energies of cobalt oxide and lithium cobalt oxide according to eqs.(S12) 
and (S13): 

H˚CoO2 = -290 kJ/mol – (425 kJ/mol + (249.2 kJ/mol) × 2 = -1213.4 kJ/mol  (S19) 
H˚LiCoO2 = -679 kJ/mol – (159.4 kJ/mol + 425 kJ/mol + (2)(249.2 kJ/mol))  

= -1761.8 ± 3 kJ/mol   (S20) 
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The comparison of the cohesive energy per atom in Scheme S1a shows that CoIVO2(s) is 

relatively weakly bonded (and consequently quite unstable), which contributes to the large 
energy release.  

---------------------------------------------------------------------------------------------- 
(a) 

      Li(s)  +  CoIVO2(s)  ®  LiCoIIIO2(s)   

Hoi         -159.4    -1213.4      -1762   kJ/mol        DrHo = -389 kJ/mol 
Hoi  per atom   -159.4       -404         -441  kJ/mol 
----------------------------------------------------------------------------------------------- 
----------------------------------------------------------------------------------------------- 
(b) 

      Li(s)  +  MnIVO2(s)  ®  LiMnIIIO2(s)   

Hoi           -159.4    -1300.8         -1768    kJ/mol       DrHo = -308 kJ/mol 

Hoi per atom     -159.4       -434            -442   kJ/mol 
 
Goi            -126.7     -1103.6         -1536    kJ/mol DrGo  = -306 kJ/mol 
Goi per atom       -126.7       -368            -384   kJ/mol   
             Ecello = -DrGo/F = 3.17 V 
----------------------------------------------------------------------------------------------- 

 
Scheme S1. Cohesive (free) energies in a metal-oxide-based battery with a lithium-metal 
anode. (a) CoO2. (b) MnO2. High (i.e. only slightly negative) energy values are 
highlighted in red and orange.  

 
Cohesive energies of MnO2 and LiMnO2 were calculated from the enthalpies and free energies 
of formation reported as 

DfHoMnO2 = -521.4 kJ/mol17, DfGoMnO2 = -466.4 kJ/mol17   

   DfHoLiMnO2 = -829 kJ/mol18, DfGoLiMnO2 = -772 kJ/mol18 
 
Using eqs.(S12) and (S13), we obtain 

H˚MnO2 = -521.4 kJ/mol – (281 kJ/mol + (2)(249.2 kJ/mol)) = -1300.8 kJ/mol (S21a) 
G˚MnO2 = -466.4 kJ/mol – (173.6 kJ/mol + (2)(231.8 kJ/mol)) = -1103.6 kJ/mol (S21b) 
H˚LiMnO2 = -829 kJ/mol – (159.4 kJ/mol + 281 kJ/mol + (2)(249.2 kJ/mol))  

= -1767.8 kJ/mol (S22a) 

G˚LiMnO2 = -772 kJ/mol – (126.7 kJ/mol + 173.6 kJ/mol + (2)(231.8 kJ/mol))  

= -1535.9 kJ/mol (S22b) 
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The comparison of the cohesive (free) energy per atom is shown in Scheme S1b. The cell voltage 

of a lithium-ion battery with a lithium-metal anode and manganese-oxide cathode can be 
approximately calculated from the cohesive free energies: 
 

Ecello(xLi = 0.5) ≈ - (-1536 – (-127 -1104)) kJ / 96.5 kC = 3.17 V   (S23) 
 
Thermodynamic data for graphite and lithiated graphite. From the free energy of formation 

of graphite DfGoC(s) = 0, we find from eq.(S13) 
 

GoC(s) = DfGoC(s) - 671.3 kJ/mol = - 671.3 kJ/mol.    (S24) 
 

Each C-atom has 4 half bonds or two full bonds, so per bond, the cohesive free energy is 
 

(-671 kJ/mol)/2 bonds = -336 kJ/(mol of bonds)    (S25) 
 

which is reasonable with -359 kJ/mol C-C bond-formation energy and a ~6% entropic 
contribution. 
 
The value for G°LiC6(s) can be found as follows: The average potential of a cell with a graphite 
cathode and a Li(s) anode is E°cell = 0.15 ± 0.06 V.19 This gives  
 

ΔrG° = -FE°cell = -15 ± 6 kJ/mol  for  Li + 6 C(s) ⇌ LiC6    (S26) 
 
One can solve ΔrG° = G°LiC6(s) - (G°Li (s) + 6 G°C(s)) for G°LiC6(s) and obtain the cohesive free energy 

of lithiated graphite: 
     

G°LiC6(s) = ΔrG° + G°Li (s) + 6 G°C(s)  

= (-15 – 126.7 + 6 ´ (-671.3)) kJ/mol = -4169 kJ/mol  (S27) 

 

In this case, the enthalpy or free energy of bonding per atom is less informative than usual since 
the C-C bonding is so much stronger than the graphite–lithium bonding. 
 
Calculation of the lattice (free) energy of NaCl and LiCl. According to the principles laid out 
above, see eqs.(S12) and (S13), we can calculate the cohesive energies of NaCl and LiCl from 
their enthalpies of formation as follows: 
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HoNaCl = DfHoNaCl - (107.32 na + 121.68 cl ) kJ/mol  

= (-411.15 - 107.32 - 121.68) kJ/mol = -640 kJ/mol     (S28) 
 
GoNaCl = DfGoNaCl - (76.8 na + 105.71 cl) kJ/mol  

= (-384.15 kJ/mol - 76.8 - 105.71) kJ/mol = -566 kJ/mol    (S29) 
 

HoLiCl = DfHoLiCl - (159.4 li  + 121.68 cl ) kJ/mol  
= (-408.61 - 159.4  + 121.68) kJ/mol = -689.7 kJ/mol     (S30) 
 

GoLiCl = DfGoLiCl - (126.7 li + 105.71 cl) kJ/mol  
= (-384.39 kJ/mol - 126.7 - 105.71) kJ/mol = -616.8 kJ/mol    (S31) 

 
Other quantities shown in Figure 4 were obtained as follows: 
 

Lattice enthalpy = enthalpy of sublimation + ½ BondE + IE – EA – DfHo  (S32) 
Lattice enthalpy of LiCl = (159.4 + 121.68 + 520 – 349 – (-408.61)) kJ/mol = 861 kJ/mol 

 
Entropy of LiCl(s) = 59.33 J/molK 13 
Entropy of Li(g) + Cl(g) = (138.7 + 165.1) J/molK 13 

 
 

5. Chemical Potentials in Lithium-Ion Batteries 

 
Basic aspects of chemical potentials. The electrochemical potential of a chemical species i can 
be defined as 

i =          (S33a) 

which is the rate of change in Gibbs free energy G = U + PV – TS (of the system) with a small 
change in the amount of species i at fixed temperature and pressure as well as fixed amounts of 
all other species. From this, the chemical potential can be obtained as27 
 

 μi = i – zi F f         (S33b) 

 

!µ ∂G
∂ni

⎛

⎝⎜
⎞

⎠⎟ T ,P,nj≠i

!µ
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where zi is the charge of species i, F = 96.5 kC/mol, and f is the Galvani electrical potential. For 

neutral species such as the lithium atom, zLi = 0 and therefore μLi = Li. 

Equation (S33a) can be shown20 to lead to 
 

G = Sspecies i i ni          (S34) 

 
where the sum is over a full set of species, of amounts ni in mole, in the system. Note that there 
is no restriction to constant T and P, or to a closed system, for eq.(S34). The chemical potential is 
therefore the partial molar Gibbs free energy of a species i. For instance, the Gibbs free energy of 
a cathode consisting of 2 moles of FePO4 and 1.5 moles of LiFePO4 is  
 

 Gcathode = 2 mol µFePO4 + 1.5 mol µLiFePO4 

=  2 (-2749 kJ) + 1.5 (-3206.5 kJ) = -10,308 kJ    (S35) 
 
Traditional thermodynamics in terms of free energies of formation usually cannot really quantify 
chemical potentials, but only their differences. Our thermodynamics in terms of individual 
(molecular/atomic/compound) enthalpies Hoi and free energies Goi12, 21 has overcome this 
limitation. 

For pure solids of constant composition, there is no concentration dependence of the 
chemical potential and we have simply 
 
  μpure solid = Gopure solid          (S36) 

 
With μi = Goi + RT lnai,20 this is equivalent to stating that the activity ai of a pure solid is  

 
apure solid = 1.         (S37) 

 
Chemical potential of lithium in coexisting phases. In diffusion equilibrium, the chemical 
potential of any diffusible species is uniform throughout the system. For instance, for coexisting 
Li0.02FePO4 and Li0.98FePO4, the chemical potential of lithium or of iron is the same in both 
phases: 
  

!µ

!µ
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µLi(Li0.02FePO4) = µLi(Li0.98FePO4) = µLi(Li0.02FePO4 coexisting with Li0.98FePO4)   (S38a) 

µFe(Li0.02FePO4) = µFe(Li0.98FePO4)        (S38b) 

 

Otherwise, the system could achieve a reduction in Gibbs free energy, DG < 0, by lithium atoms 

(or ions plus electrons) diffusing from high to low partial molar Gibbs free energy (i.e. from high 
to low chemical potential). This would be in violation of diffusion equilibrium. 
 
Chemical potential of lithium in coexisting iron phosphates. As mentioned above, it is a well-
known fundamental property of chemical potentials that in Li-diffusion equilibrium between two 
phases, e.g. FePO4 and LiFePO4, the chemical potential of lithium is the same in both phases. In 
a consistent analysis, presented in the following, this requires at least a small amount of lithium 
in FePO4, e.g. Li0.02FePO4; we show below how this low-level lithium incorporation is 
entropically favored. The uniform chemical potential of lithium can be expressed as 
 

µLi(Li0.02FePO4) = µLi(Li0.98FePO4)        (S39) 
 
We can repeat the calculations of eqs.(7) and (8) in the main text, with 
 

nLi = 0.98 nLi0.98FePO4 + 0.02 n Li0.02FePO4       (S40) 

nLi0.02FePO4 + nLi0.98FePO4 = nFe 
 
These equations can be solved for 
 

nLi0.02FePO4 = (nFe – nLi)/0.96  

nLi0.98FePO4 = nFe - (nFe – nLi)/0.96   

 
to give the dependence of G on the chemical potential of lithium 
 

Gsys = Si µi ni = µLi0.98FePO4 nLi0.98FePO4 + µLi0.02FePO4 nLi0.02FePO4 

= µLi0.98FePO4 (nFe - (nFe – nLi)/0.96) + µLi0.02FePO4 (nFe – nLi)/0.96   (S41) 

 
Taking the derivative gives 
 

µLi(cathode) = (¶Gsys/¶nLi)T,P,n’ = (µLi0.98FePO4 - µLi0.02FePO4)/0.96    (S42) 
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We can combine eqs. (S42) and (S38a) to relate four chemical potentials, two of which are the 
same: 

µLi(Li0.02FePO4) = µLi(Li0.98FePO4) = (µLi0.98FePO4 - µLi0.02FePO4)/0.96    (S43) 

 
Given the approximately linear dependence of the chemical potential of the cathode on the 
lithium fraction, see Figure S3a and eq.(S63) below, 10 
 

µLixFePO4 ≈ µFePO4 + xLi (µLiFePO4 - µFePO4)        

   = -2749 kJ/mol - xLi 458 kJ/mol      (S44a) 

 
the factor of 0.96 cancels out and  
 

µLi(Li0.02FePO4) = µLi(Li0.98FePO4) ≈ µLiFePO4 - µFePO4 

      = GoLiFePO4
 - GoFePO4 = -458 kJ/mol       (S44b) 

 
essentially the same as obtained in the main text, eq.(17), using the simplifying model of 
stoichiometric phases. 

Specifying the species i of the chemical potential is important; for instance, we need to 
distinguish between the chemical potential of Li0.98FePO4 and the chemical potential of lithium 
in Li0.98FePO4, which are not at all equal: 

 

µLi0.98FePO4 = GoLi0.98FePO4
 = -3206.5 kJ/mol + 0.02´458 kJ/mol  (S45a)   

µLi(Li0.98FePO4) = -458 kJ/mol       (S45b) 

 
One is the rate of change in Gibbs free energy with a small change in the amount of Li0.98FePO4, 
with a value according to eq.(S44a), the other the rate of change in Gibbs free energy with a 
small change in the amount of lithium in Li0.98FePO4, with the numerical value shown in 
eq.(34b). We will show that in the single-phase region, the two chemical potentials in eq.(S45) 

are related through µLi(LixFePO4) = (¶µLixFePO4/¶x), see eq.(S62a) below. 
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6. Cell Voltage from Thermodynamics 

Cell voltage and the slope of G(x). At constant T and P, the cell voltage Ecell relates to the 

change in Gibbs free energy with the extent of reaction: 
 
 Si µi i  = (¶Gchem/¶x)T,P = - ne F Ecell      (S46) 

 

This important relation has been presented in some textbooks (though with (¶G/¶x)T,P often 

misleadingly replaced by DrG) and was recently derived carefully from first principles.22 Instead 

of repeating this derivation, we link eq.(S46) to the much more familiar Nernst equation 
 
 Ecell = Ecello  - RT/(ne F) lnQ        (S47) 

 
in effect running part of a derivation of the Nernst equation in reverse. The reaction quotient Q 
also appears in  
 
 (¶Gchem/¶x)T,P = DrGo  + RT lnQ       (S49) 

 
a frequently presented equation in the thermodynamic theory of chemical equilibrium20 that 

could conceptually follow soon after (¶Gchem/¶x)T,P = Si µi i. After multiplying the Nernst 

equation with - ne F, it becomes 

 

 - ne F Ecell = - ne F Ecello  + RT lnQ       (S50) 

 

Given that DrGo = - ne F Ecello, which is the widely used relation between standard Gibbs free 

energy change and standard cell voltage, we can replace the first term on the right-hand side of 
eq.(S50): 
 
 - ne F Ecell = DrGo  + RT lnQ        (S51) 

 
Given that the right-hand sides of eqs.(S49) and (S51) are the same, their left-hand sides must be 
equal, too, so 
 
 (¶Gchem/¶x)T,P = - ne F Ecell        (S52) 
 
confirming eq.(S46). 

!ν

!ν
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Cell voltage and lithium chemical potential difference. The thermodynamic analysis of 
lithium-intercalation batteries relies heavily on the relation between the cell voltage and the 
chemical potential of lithium atoms:8, 15, 23-25 
 
 Ecell = -DµLi/F = - (µLi(cathode) – µLi(anode))/F      (S53) 
 
Here we review the classical derivation of this equation by McKinnon and Haering24 with added 
interpolations and standard chemistry notation: since the Li+ ions remain inside the system 
throughout the process, only the electrons do work in the thermodynamic sense, which is energy 
transferred between system and surroundings. The work done is just wele = - e Ecell < 0 for each 
electron (of charge -e). Based on 
 
 DrG = wnonPV    at constant T and P       (S54) 
 
this work is the change in Gibbs free energy due to the chemical reaction, 
 
 DrG = wele = - e Ecell         (S55) 
 
More rigorously,22 in electrochemical thermodynamics for a reversible cell, with the extent of 
reaction x, one finds (see eq.(S52)) 
 
 “DrG” = (¶Gchem/¶x)T,P = - ne F Ecell = - F Ecell      (S56) 
 
with ne = 1 for singly-charged lithium ions. From 1 mol electrons = 6´1023 electrons, striking 
electrons on both sides, we obtain 1 mol = 6´1023 and therefore26 
 

F = 96500 C/(1 mol) = 96500 C/(6´1023) = 1.6´10-19 C = e    (S57) 
 
As a result, equations (S55) and (S56) are recognized as identical. 

Next, one can relate the Gibbs free energy change to the lithium chemical potential 
difference. If we write the intercalation reaction as 
 

Li(anode) ® Li(cathode)         (S58) 
 
then according to standard chemical thermodynamics of the approach to equilibrium,27 
 
 “DrG” = (¶Gchem/¶x)T,P  = Si µi i  = µLi(cathode) – µLi(anode)     (S59) 
 

!ν
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This tells us that the molar Gibbs free energy change is the difference in chemical potential of Li 
in cathode and anode; inserting this eq.(S59) into eq.(S56), we obtain 
 
 F Ecell = - (µLi(cathode) – µLi(anode))        
 
which is equivalent to eq.(S53), completing the derivation.  
 

Cell voltage and the slope of Gcath(xLi). The mole fraction of lithium, xLi º x, in an iron-

phosphate cathode of average composition LixFePO4 can be related to amounts of lithium and 
iron (both in mol) according to 
 

xLi = nLi/nFe            (S60) 
 
Then, the slope of the molar Gibbs free energy of the cathode, 
 

Gcath/nFe = µcath = µLixFePO4     (x < 0.02 & x > 0.98)      (single phase) (S61a) 

 Gcath/nFe = µcath = µLi0.02FePO4  

+ (xLi - 0.02)/0.96 (µLi0.98FePO4 - µLi0.02FePO4)     (two phases) (S61b) 

 

as a function of x º xLi gives the chemical potential of lithium, according to its definition and 
using eqs. (S60) and (S61), 
 
 µLi(cath) = (¶Gcath/¶nLi) = (¶(Gcath/nFe)/¶xLi) = (¶µcath/¶xLi)    (S62a) 

= (¶µLixFePO4/¶x)    (single phase) (S62b) 

 = (µLi0.98FePO4 - µLi0.02FePO4)/0.96  (two phases) (S62c) 

 
as indicated by Phan et al.10 To illustrate eq.(S61), the dependence of the molar free energy (or 
chemical potential) of an iron phosphate-based cathode on lithium mole fraction according to 
Phan et al.10 is presented in Figure S3a, and its slope (matching eq.(S62)) in Figure S3b. The 
corresponding cell voltage in a battery with a lithium metal anode is shown on the right axis. A 
0.09 V shift relative to the corresponding plot of Phan et al.10 can be traced back to a referencing 
error as discussed below. 
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Figure S3. Plots of the molar Gibbs free energy of, and of the chemical potential of lithium in, an 
iron-phosphate-based cathode as a function of lithium content according to Phan et al.10 and eq.(S63). 
(a) Blue curve: molar Gibbs free energy (or chemical potential) of a hypothetical single-phase 

LixFePO4 cathode, µLixFePO4, according to eq.(S63) on a scale with the unbonded atoms at zero free 

energy. The red dashed-line double tangent to the single-phase Gibbs free energy curve (in blue) 
marks the molar Gibbs free energy of coexisting Li0.02FePO4 and Li0.98FePO4, which has the lowest 
Gmolar at most values of xLi. In this miscibility gap, the fraction of Li0.98FePO4 increases from left to 
right, while the fraction of Li0.02FePO4 decreases. In the center of the figure, the equality of the slope 

µLi of the red-dashed double tangent with DrGo, the slope of the green dashed line connecting the 
standard molar free energies GoFePO4 and GoLiFePO4, is quite apparent. (b) Thin blue curve: magnitude 

of the slope (¶µLixFePO4/¶x) of a hypothetical single-phase LixFePO4 cathode from a); thick red line: 

slope of the curve of lowest molar G in a) (mostly of the double tangent in a): dashed), which is the 

magnitude of the chemical potential µLi of lithium in the cathode, see eq.(S62). The cell voltage with 
a lithium-metal anode is shown on the right axis. 



 19 

Initial voltage drop and entropic driving force. There is a large entropic driving force for 
lithium incorporation when FeIIIPO4 is completely free of lithium.10 This is the reason for the 
initial high voltage commonly observed for xLi = 0 and disproves the claim made by Liu et al.28 
that entropy is always negligible, which applies only for phases of fixed composition.  

When a phase is devoid of a component or species, the chemical potential of that species 
is negative infinity. This can be seen in statistical mechanics of the multiplicity of lithium in 
lattice models, which are directly applicable here and used in advanced analyses, e.g. of Phan et 
al.10 In a regular-solution model that fits the phase diagram at moderate temperatures,10 the molar 
Gibbs free energy, or chemical potential, of a hypothetical single-phase LixFePO4 cathode depends 

on the lithium mole fraction xLi º x according to 
 
 µLixFePO4 = GoFePO4 + xLi (GoLiFePO4 - GoFePO4) + xLi (1-xLi) 22 kJ/mol   

 
+ RT (xLi lnxLi + (1-xLi) ln(1-xLi))     (S63) 

 
as plotted in Figure S3a (blue curve). Then, certainly for small mole fractions xLi, according to 
eq.(S62b) and as shown in Figure S3b, 
 
 µLi(cath)(xLi) = (¶µLixFePO4/¶x) = (GoLiFePO4 - GoFePO4) 

           + 22 kJ/mol – xLi 44 kJ/mol + RT (ln(xLi) - ln(1-xLi))   (S64)  
 

For xLi = 0, the fourth term in the sum (RT ln(0) = -¥) diverges and therefore 
 

µLi(xLi = 0) = -¥.        (S65) 
 
This quantifies the very strong entropic driving force, traditionally summarized as “nature abhors 
a vacuum”, for incorporating a dilute solute. The infinity does not make the Gibbs free energy of 
the system diverge because lithium’s contribution μLi nLi to Gsys is zero due to the vanishing 

amount nLi = 0. Furthermore, this is not a strong infinity: even with just one Li atom/ion in a 
mole of FePO4, xLi = 10-24, the entropic voltage contribution has dropped from infinity to 1.4 V 
(added to (GoLiFePO4 - GoFePO4) + 22 kJ/mol from the difference in bonding). There is 

correspondingly a reverse entropic driving force as lithium empties out of a graphite anode.  
No simple chemical reaction can be written here, so the lithium chemical potential 

formalism is needed. Still, one can explain the chemical potential of lithium, in this case in terms 
of an entropic driving force. 
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Erroneous cell voltage due to neglected entropy of solid lithium. The cell voltage shown in 
Figure 3 of the informative paper by Phan et al.10 is 3.52 V, while the useful thermodynamic data 
compiled in their Table 1 give only 3.43 V. The moderate discrepancy can be traced to an 
inconsistent treatment of the standard molar entropy of metallic Li. Its value is 29.1 J/mol K, so – 
T SoLi(s) = - 298 × 29.1 J/mol = -8.7 kJ/mol at 298 K, which corresponds to -8.7 kJ/mol/96.5 

kC/mol = -0.09 V, the numerical value of the discrepancy.  In effect, this error is due to a pitfall 
of standard thermodynamics that has been remarked upon too little, namely that  
 

DfGoLi(s) ≠ DfHoLi(s) – T SoLi(s)        (S66) 

 

Specifically, Phan et al.10 defined Goi = DfHoi – T Soi for the two stoichiometric phases i of the 

cathode. For consistency, this definition would need to be applied to all reactants, including 
metallic Li:  
 
 GoLi(s) = DfHoLi(s) – T SoLi(s) = 0 – 298 ´ 29.1 J/mol = -8.7 kJ/mol  (S67) 

 
However, below their eq.(9), Phan et al.10 set 
 
 GoLi(s) = µLi(s) = 0        (S68) 

 
The inconsistency between the two values for GoLi(s), from the use of two different free-energy 
scales, gave rise to a minor 0.09 V error in their Figure 3. 
 
Thermodynamics of an open electrochemical cell. We use a Zn(s) |Zn2+(aq)||Cu2+(aq)|Cu(s) as 
a simple, familiar example of a galvanic cell here. For an open cell, electrons do show up in the 
overall reaction:  

           Zn(s) ®  Zn2+(aq) + 2e-(Zn anode)     (S69a) 
 
 Cu2+(aq) + 2e-(Cu cathode) ® Cu(s)      (S69b) 
 
 Zn(s) + Cu2+(aq) + 2e-(Cu cathode) ®  Zn2+(aq) + 2e-(Zn anode) + Cu(s)  (S69c) 
 

(¶G/¶x)T,P = S i=16 i i = Si=14 µi i + e-(anode) - e-(cathode) = Si=14 µi i  

       + 2 µe-(Zn(s)) – 2 F f(Zn anode) - 2(µe-(Cu(s)) - F f(Cu cathode)) (S69d) 
 

!µ !ν !ν !µ !µ !ν
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Note that the electromotive force is not equal to f(Zn anode) - f(Cu cathode). Rather, the zinc 

electrode needs to be placed in contact with a (second) piece of copper.24 Then, in diffusion 
equilibrium, the electrochemical potential of the electrons is the same in zinc and the connected 
piece of copper, 

 

e-(anode)  = 2 μe-(Zn(s)) – 2 F f(Zn anode) = 2 μe-(Cu(s)) – 2 F f(Cu anode)  (S70) 

 
With the difference in electron electrochemical potential (using the conventional “cathode minus 
anode” definition), inserting eq.(S70) in the third step, we obtain 
 

D e- = e-(cathode) - e-(anode)  

= 2 µe-(Cu(s)) – 2 F f(Cu cathode) - 2 (µe-(Zn(s)) – F f(Zn anode)) 

 = 2 µe-(Cu(s)) – 2 F f(Cu cathode)) - 2 (μe-(Cu(s)) – F f(Cu anode)) 

 =  2F (f(Cu anode) - f(Cu cathode)      (S71) 

  
This gives the open circuit voltage, or OCV, as a “natural” potential difference of 
 

Ecell = OCV = f(Cu cathode) - f(Cu anode) = - D e-/2F   (S72) 

 
Since electrons do not flow through an external circuit here, no electrical work is done by an 
open cell, wele = 0, and therefore in equilibrium  
 

     0 = (¶G/¶x)T,P = Si=14 µi i + D e- = DrGo + RT lnQ + e-(anode) - e-(cathode) (S73) 

 

Solving this equation for D e-= e-(cathode) - e-(anode)  as defined in eq.(S71), we find 

 

 Ecell = D e-/(-2F) = DrGo/(-2F) – (RT/2F) lnQ     (S74) 

 

which is the Nernst equation with ne = 2.27 

 
Thermodynamics of a continuously working electrochemical cell. For a very short initial 
period of time, the working galvanic cell behaves like an open cell. It usually produces some 

!µ

!µ !µ !µ

!µ

!ν !µ !µ !µ

!µ !µ !µ
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electrons in the anode and consumes some in the cathode, which generates a charge difference 
and resulting voltage. During this time, no electrons flow through the external circuit, so no 
electrical work is produced. 

In a continuously working cell, including a reversible one, electrons are only 
intermediates. The electrons generated at the anode travel through the external circuit, 
performing electrical work, and end up in the cathode: 

 
 Zn(s) ®  Zn2+(aq) + 2e-(Cu cathode)      (S75a) 

 
The electrons are consumed in the reaction at the cathode: 

 
  Cu2+(aq) + 2e-(Cu cathode) ® Cu(s)     (S75b) 

 
Therefore, the net reaction does not show electrons. 

 
 Zn(s) + Cu2+(aq) ® Zn2+(aq) + Cu(s)      (S75c) 

 
(¶G/¶x)T,P = Si i i = Si µi i = DrGo + RT lnQ    (S75d) 
 

If the process is made reversible by an applied external voltage that matches the cell voltage,  
 

wele = DrG ≈ |DnLi(s)| (¶G/¶x)T,P     (S76) 
 

The voltage drop across a large external resistance can, in effect, act like a nearly matched 
applied voltage.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

!µ !ν !ν
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7. Plots with the Chemical Potential of the Electron in Metal-Oxide Electrodes  
 

 
Figure S4. Plot of calculated (squares) and measured (vertical bars) cell voltages with a MO2 
cathode (with metal M as indicated) and Li(s) anode as a function of the calculated Fermi level 
μe- in (a) lithiated transition-metal oxides; (b) lithium-free transition-metal oxides.  Little 
correlation is observed, in particular in b).  Data were obtained from highly cited Aydinol et al.15 
The coefficients of determination are moderate at best: in a), R2 = 0.68 for the predicted and 0.54 
for the experimental voltages, while b) shows a weak anticorrelation with R2 = 0.40 and 0.24 for 
predicted and experimental voltages, respectively. 
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Figure S5. Plot of the chemical potential of electrons in (a) LiMO2 and (b) MO2 (with metal M 
as indicated), estimated by quantum-chemical simulations,15 as a function of the 4th ionization 
energy of the transition metal M. The coefficients of determination are moderate, R2 = 0.58 in a), 
and R2 = 0.42 in b) for a weak anticorrelation.  
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